В каких отраслях могут устроить революцию квантовые сенсоры?

РБКHi-Tech

Шестое чувство. В каких отраслях могут устроить революцию квантовые сенсоры?

Квантовые сенсоры нового поколения — это пока еще в основном лабораторные разработки. Однако в перспективе они будут применяться во множестве отраслей и вырастут в многомиллионную индустрию

Текст Анастасия Дергачева

У «холодных» атомов есть не только коммерческий потенциал: они также пригодятся в сенсорах, которые используют экологи и астронавты

Квантовые сенсоры нового поколения — отдельное направление рынка квантовых технологий. Такие сенсоры обладают уникальным сочетанием свойств: они имеют микроскопический размер при сверхвысокой чувствительности. Их разработка и внедрение ведутся лишь последние несколько лет, а принципы работы основаны на таких явлениях квантовой механики, как суперпозиция, квантовая запутанность и квантовое измерение.

«Все виды сенсоров высокого технического уровня являются квантовыми», — рассказывает в интервью журналу РБК профессор Университета Саутгемптона Тим Фригард. Сенсоры есть в любом смартфоне: камера, акселерометр, магнитометр, датчик освещенности, датчик приближения, сканер отпечатков пальцев и другие. Однако разработки последнего времени отличаются от нынешних массовых решений — они были сделаны уже во время так называемой второй квантовой революции.

Разнообразные сенсоры нового поколения могут дать мощный импульс развитию сразу нескольких индустрий — нефтегазовой отрасли, транспорту, строительству и т.д. По оценке консалтингового агентства Persistence Market Research, к 2025 году мировой рынок квантовых сенсоров вырастет до $329,4 млн. Однако сегодня большинство продуктов второй квантовой революции еще не покинули стен лабораторий и пока находятся «в процессе преобразования в демонстрационные прототипы», замечает профессор Фригард.

Журнал РБК изучил самые перспективные варианты применения новых квантовых сенсоров.

МРТ молекулы

Медицина ждет внедрения «сенсоров будущего» как ни одна другая сфера. Если сегодня доктора исследуют организм на уровне органов, то квантовая революция позволит заглянуть буквально в каждую клетку тела.

В 2017 году группа исследователей из Университета Штутгарта и Института исследований твердых тел Общества Макса Планка разработала первый квантовый сенсор, способный, по словам руководителя группы профессора Йорга Врактрупа, «разложить молекулу практически на отдельные атомы».

Сенсор умеет «сканировать» белки и потенциально должен уметь обнаружить пораженные белки на самой ранней стадии одного из самых опасных в мире заболеваний — болезни Крейтцфельдта — Якоба. Это заболевание, также называемое «коровьим бешенством», разрушает головной мозг, при этом магнитно-резонансная томография (МРТ) не позволяет диагностировать его с необходимой точностью.

В отдаленном будущем умение проникать в отдельную клетку также может помочь в создании искусственного мозга, не уступающего по интеллекту человеческому.

Космический гравиметр

Квантовый гравиметр — разработка Университета Бирмингема. Этот сенсор поможет в поисках новых месторождений нефти и других полезных ископаемых. Оснащенные им устройства также научатся обнаруживать пустоты и провалы под землей, создающие угрозу для работы в шахтах, описывали потенциал изобретения аналитики Persistence Market Research. Строительство — еще одно вероятное поле «деятельности» сенсора: инженеры смогут более точно проектировать и размещать подземные коммуникации.

Технология гравиметра основана на «холодных» атомах: охлажденные до температуры, близкой к абсолютному нулю, атомы становятся сверхчувствительными к минимальным изменениям силы тяжести и фиксируют эти изменения для измерителя.

«Холодные» атомы планируется использовать не только в бизнесе: с их помощью также можно мониторить массу мировых льдов, океанских течений и уровень моря. А британская компания Teledyne e2v совместно с Clyde Space и Университетом Бирмингема готовит проект по производству «холодных» атомов в космосе, на борту специального спутника. Миссия получила название CASPA (Cold Atom Space Payload — «Полезная нагрузка на холодный атом»).

Собственные разработки гравитационных сенсоров есть и у Министерства обороны Великобритании. Ведомственная лаборатория разрабатывает устройства для отслеживания изменений физических свойств объектов «сквозь стены». Технология, надеются исследователи, приведет к научным прорывам в области навигации и станет альтернативой спутникам GPS, уязвимым для хакерских атак.

«Квантовая пленка»

В ноябре 2017 года Apple приобрела стартап InVisage, разработавший «квантовую пленку» — матрицу на основе квантовых точек. Сенсор имеет расширенный динамический диапазон и высокую светочувствительность. Ранее стартап привлек $98 млн от InterWest Partners, Nokia Growth Partners и других инвесторов.

Современные цифровые матрицы в фотоаппаратах и смартфонах делают на основе кремниевых чипов. По сравнению с аналоговой пленкой у них меньший диапазон, то есть камера может передать меньше тонов между светом и тенью. При контрастном освещении яркость объектов может не «уместиться» в динамический диапазон матрицы — например, на фотографиях «проваливается» небо.

В сенсоре Quantum Film свет сначала проходит через матрицу цветных фильтров, а затем попадает на слой с квантовыми точками — они нанесены на него подобно краске. Особое расположение элементов сенсора увеличивает способность воспринимать свет, что обеспечивает больший динамический диапазон и лучшее качество изображения в условиях низкой освещенности.

Всего у InVisage 27 патентов, но воспользуется ли Apple «квантовой пленкой», пока неизвестно. «Apple время от времени покупает небольшие компании, но мы не обсуждаем наши цели», — прокомментировал представитель компании поглощение InVisage порталу TechCrunch.

Квантовые часы как универсальный сенсор

Квантовые часы — разновидность атомных часов и самый необычный сенсор: они ничего не «чувствуют» непосредственно, только определяют время и при этом могут быть использованы для измерения других величин, например гравитации. «Тикают» в них атомы. Стандартом измерения времени считается атом цезия-133, в последних квантовых часах используются атомы стронция, охлажденные при помощи лазера, а также «квантовый» газ.

Пример использования устройства — атомные часы Национального института стандартов и технологий США, в 37 раз более точные, чем международный стандарт времени. Часы не отстанут и не ускорятся ни на секунду в течение более 15 млрд лет.

Изменение «скорости тикания» атомов происходит под действием силы тяжести, магнитного и электрического полей и других явлений. Чем меньше чувствительность, тем точнее часы. При этом часы разных видов чувствительны к разным явлениям. Большая чувствительность позволяет относить их к сенсорам.

В будущем квантовые часы могут прийти на смену часам, которые используются в системах GPS и ГЛОНАСС. По прогнозу Persistence Market Research, всплеск спроса на технологию случится, как только она будет доведена до массового рынка. Квантовые часы пригодятся на рынках, которые, как ожидается, резко увеличат объем в ближайшие годы: интернет вещей, беспилотные автомобили и другие автономно управляемые устройства с необходимостью точных замеров времени.

Фото: NASA / JPL-Caltech

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Как ты себя чувствуешь Как ты себя чувствуешь

Как понять свое тело и разрешить себе получать удовольствие

Cosmopolitan
Больше движений! Больше движений!

Нужно больше двигаться, а не искать отговорки, почему не можешь

Y Magazine
Биткоин не для всех Биткоин не для всех

Технология блокчейн может стать инструментом контроля экономики государством

CHIP
Будь в форме Будь в форме

Мы собрали семь причин, из-за которых вы никак не можете обрести фигуру мечты

Moodboard
Что делать и куда жаловаться, если вас сбил электросамокат Что делать и куда жаловаться, если вас сбил электросамокат

Как действовать в случае ДТП с электросамокатом

РБК
Минус вайб Минус вайб

Чем опасно доверять написание кода нейросетям?

N+1
Пресноводные русалки Пресноводные русалки

Когда-то давно, 200 тысяч лет назад, в Евразии появился необыкновенный зверь

Знание – сила
Изогнутый экран смартфона — это удобно? Изогнутый экран смартфона — это удобно?

Стоит ли покупать смартфоны с изогнутыми экранами?

CHIP
Франшиза: Что скрывается за этим словом? Франшиза: Что скрывается за этим словом?

Франшиза — идеальный рецепт успеха или сложная система с подводными камнями?

Наука и техника
Нажми на кнопку: фильмы по мотивам азиатских игр Нажми на кнопку: фильмы по мотивам азиатских игр

Гид по экранизациям азиатских видеоигр

Правила жизни
От Тегерана до Потсдама: большая дипломатия в конце Второй мировой войны От Тегерана до Потсдама: большая дипломатия в конце Второй мировой войны

Как Сталин, Рузвельт и Черчилль преодолевали взаимное недоверие

Монокль
5 самых странных (но прикольных) видов велоспорта: вы точно захотите попробовать 5 самых странных (но прикольных) видов велоспорта: вы точно захотите попробовать

Топ-5 самых необычных спортивных дисциплин с велосипедом

ТехИнсайдер
От синтеза клетки до зрелого цветка От синтеза клетки до зрелого цветка

Как выращиваются орхидеи рода фаленопсис на базе тепличного комбината

Агроинвестор
Этноконфессиональные особенности мясного потребления Этноконфессиональные особенности мясного потребления

Под влиянием каких факторов меняется ассортимент мясной продукции

Агроинвестор
Александр Невский и его время Александр Невский и его время

Александр Невский правил в тяжелое для нашего отечества время

Знание – сила
Заменили отцов на заводах Заменили отцов на заводах

Юные герои тыла: как дети работали на заводах во время Великой Отечественной

Ведомости
Победа и Наука. Взгляд из Сибири Победа и Наука. Взгляд из Сибири

Война стала высшей точкой слияния науки и государства

Знание – сила
Привычка худеть Привычка худеть

Думаешь, как сбросить вес без изнурительных тренировок и жестких диет?

Лиза
Женщина на борту Женщина на борту

Женщины в море: против суеверий, морских богов и стереотипов

Y Magazine
Если ты аэрофоб Если ты аэрофоб

Как перестать бояться летать на самолетах

Лиза
Флагман «Адмирала» Флагман «Адмирала»

Platinum от Admiral Yachts: суперъяхта, опередившая своё время

Y Magazine
В Германии, в Германии, проклятой стороне В Германии, в Германии, проклятой стороне

Как советского солдата удержали от мести при штурме Германии

Монокль
Геохимики СПбГУ первыми в России датировали подводный минерал из крупнейшего бассейна восточной Арктики Геохимики СПбГУ первыми в России датировали подводный минерал из крупнейшего бассейна восточной Арктики

Геологи СПбГУ смогли первыми определить возраст подводного арктического минерала

Знание – сила
Цирцея и Фея Моргана: как героини древних мифов вдохновляют современных писательниц Цирцея и Фея Моргана: как героини древних мифов вдохновляют современных писательниц

Шесть современных произведений, которые переосмысляют легендарные сюжеты

Forbes
Свежая ягода — круглый год Свежая ягода — круглый год

Как функционирует круглогодичный комплекс по выращиванию ягод в Ставрополье

Агроинвестор
Зеленые защитники Зеленые защитники

Cамые благоприятные комнатные растения по знаку зодиака

Лиза
Настоящая леди Настоящая леди

Правила поведения в общественных местах: что ты знаешь о приличиях

Лиза
Древнему жителю Китаю ампутировали ногу в наказание Древнему жителю Китаю ампутировали ногу в наказание

Ампутацию считают древнейшей хирургической операцией

N+1
Подводный флот Ирана Подводный флот Ирана

Главная сила ВМС Ирана — подводные лодки

Наука и техника
Новое направление Новое направление

Знакомимся ближе с полноразмерным гибридным кроссовером EXLANTIX ET

Y Magazine
Открыть в приложении