Можно ли подружиться с умной машиной? Не может ли она вытеснить человека?

Знание – силаHi-Tech

«Нам пора сформулировать закон сохранения цивилизации»

Беседовала Анна Пименова

Искусственный интеллект давно и прочно вошел в нашу жизнь. Сегодня о нем знает каждый, а пользуются им практически все. Его роль будет только расти, но по сей день не утихают споры: что это такое? Существует ли он на самом деле? Возможно ли его создать в принципе? Чем он отличается от естественного, человеческого? Можно ли подружиться с умной машиной? Не может ли она вытеснить человека? Чего тут больше – возможностей или опасностей? Об этом наш разговор с Константином Вячеславовичем Воронцовым, профессором РАН, заведующим кафедрой машинного обучения и цифровой гуманитаристики МФТИ, заведующим кафедрой математических методов прогнозирования факультета ВМК МГУ и заведующим лабораторией машинного обучения и семантического анализа Института искусственного интеллекта МГУ.

Константин Вячеславович Воронцов

«Знание – сила»: Константин, определений и пониманий ИИ существует немало. Так что же это такое?

Константин Воронцов: Термин «Artificial Intelligence» придумали ученые, собравшиеся летом 1956 года на двухмесячный семинар в Дартмуте, чтобы обозначить новое направление исследований. Была сформулирована общая цель – научиться с помощью вычислительной техники решать сложные интеллектуальные задачи, которые до сих пор мог решать только человек. Попросту говоря, сделать программы умнее. Все, что подходило для достижения этой цели, стали называть «искусственным интеллектом». Это был зонтичный термин, обозначавший и «мечту ученых», и нечетко очерченный круг технологий. Однако до сих пор мы не создали ничего искусственного, что по праву могло бы называться «интеллектом».

Когда появлялась новая технология, которая решала какую-то трудную задачу, ее по общему соглашению относили либо не относили к искусственному интеллекту. Что причислять к ИИ, было вопросом договоренности, консенсуса в научном сообществе. Существует даже так называемый «эффект ИИ». Допустим, ставится какая-нибудь трудная интеллектуальная задача, например, научить компьютер играть в шашки или автоматизировать принятие управленческих решений, скажем, в медицинской диагностике, геологоразведке или кредитном скоринге1. Всякий раз, когда задача оказывалась решенной, а технология – всем понятной, из того же научного сообщества раздавались голоса: «Ну, какой же это интеллект! Это опять всего лишь вычисления».

1. Кредитный скоринг — система оценки кредитоспособности (кредитных рисков) лица, основанная на численных статистических методах.

«ЗС»: Почему же это не интеллект?

К. В.: Компьютеры уже давно вычисляют и запоминают намного быстрее и надежнее человека. Но мы отказываемся называть это интеллектом. Постепенно появлялись и совершенствовались технологии игры в шашки и шахматы, распознавания изображений, обработки сигналов и речи, машинного перевода, обучения роботов. Их называли «функциональным», или «слабым», искусственным интеллектом. Каждая такая технология представляет собой не жесткую программу, а гибкую модель с параметрами, которые обучаются по данным. Но она способна решать только одну задачу – ту, на которой ее обучили разработчики.

Сейчас ситуация изменилась. В последние годы происходит прорыв в области больших языковых моделей. 30 ноября 2022 года компания OpenAI запустила проект ChatGPT, который за 2 месяца набрал 100 миллионов пользователей, что стало рекордом роста за всю историю Интернета. В марте 2023 года вышла модель GPT‑4, и через пару недель впервые в истории ИИ исследователи заявили о «проблесках общего искусственного интеллекта». Модель, обучившаяся на терабайтах текстов, приобрела сотни новых неожиданных способностей, которым разработчики ее не обучали. Это свойство называется «эмерджентностью», от английского emergent – возникающий. Оно наблюдается в биологической эволюции, когда увеличение объема нервной системы приводит к усложнению поведения, лучшей адаптивности и выживаемости вида. Размер больших языковых моделей, если его измерять числом параметров, все еще на несколько порядков меньше объема человеческого мозга, измеряемого числом синапсов. Но ожидается, что они сравняются в недалеком будущем, в пределах десятка лет.

«ЗС»: Но ведь это не первый прорыв в области ИИ?

К. В.: Столь значительный – действительно первый. Предыдущий важный прорыв был сделан в 2012 году в компьютерном зрении. Тогда появились глубокие нейронные сети для распознавания объектов на изображениях. Все предыдущие десятилетия компьютерное зрение развивалось довольно медленно, точность распознавания улучшалась на доли процента ежегодно усилиями многих научных коллективов, конкурирующих по всему миру. И вдруг – улучшение сразу почти на десять процентов.

«ЗС»: Почему это произошло?

К. В.: Появились большие данные, коллекция размеченных изображений ImageNet. Первоначальной мотивацией были такие соображения: в мозге ребенка за первые три года жизни запечатлевается несколько миллионов мгновенных снимков реальности. Этого достаточно, чтобы ребенок начал узнавать папу, маму, игрушки, ориентироваться в пространстве, выстраивать свою картину мира. Тогда почему бы не разметить миллионы фотографий из Интернета, чтобы обучать алгоритмы компьютерного зрения распознавать на них различные объекты? Люди разметили более 14 миллионов картинок с помощью краудсорсинга, выделив на них объекты 22 тысяч классов.

Казалось бы, ничего революционного, однако раньше не было таких больших размеченных данных. Имевшиеся на тот момент алгоритмы компьютерного зрения давали более 25% ошибок. В 2012 году Джеффри Хинтон с двумя своими аспирантами построил глубокую свёрточную нейронную сеть, которая дала 16% ошибок. Сети такого типа тогда уже были известны, но они придумали, как их обучать на графическом процессоре. Три фактора соединились в формулу успеха: большие данные, удачная нейросетевая архитектура с 60 миллионами параметров и устройство для быстрых параллельных вычислений. После этого в конкурсе ImageNet лидировали исключительно глубокие нейронные сети. В 2015 году был достигнут человеческий уровень ошибок 5%, а через пару лет вышли на 2%. Конкурс завершился, задача была решена.

«ЗС»: Это тот самый Джеффри Хинтон, который получил Нобелевскую премию по физике в 2024 году?

К. В.: Да, именно он. Его неспроста называют «отцом глубокого обучения ». Полвека назад всё начиналось с моделей ассоциативной памяти, имеющих прямое отношение к явлениям намагниченности в физике. Удивительно, но практически все последующие важнейшие результаты в искусственных нейронных сетях получили либо он, либо его ученики. Кстати, те самые два аспиранта, Алекс Крижевский и Илья Суцкевер – сегодня весьма заметные люди в области искусственного интеллекта.

«ЗС»: Вернемся в 2012 год. Ведь тогда графические карты использовались совершенно не для этого?

К. В.: Да, они создавались в основном для быстрой прорисовки экрана в компьютерных играх, для монтажа видео и промышленного дизайна. Фактически геймеры всего мира, вкладывая деньги в развлечение, способствовали развитию индустрии графических ускорителей. Теперь мы им немного обязаны за прогресс в области искусственного интеллекта.

«ЗС»: Вы сказали, что это когда-то было мечтой и остается мечтой по сей день. А как вы думаете, эта мечта вообще осуществится? Появится ли у нас то, что мы можем назвать полноценным искусственным интеллектом?

К. В.: Раньше ученые об этом мечтали, а когда мечта приблизилась, испугались и даже опубликовали воззвание с предложением заморозить дальнейшие исследования на полгода. Мечта вполне может оказаться интеллектом какого-то неведомого нечеловеческого типа, от которого не ясно, чего ожидать. Мы пришли к необходимости переосмыслить цели и задачи создания искусственного интеллекта. Возможно, в корне изменить само это понятие и наше отношение к нему.

«ЗС»: Каким образом? И что для вас значит это понятие?

К. В.: Обычно ИИ определяют как вычислительные технологии, позволяющие решать интеллектуальные задачи на уровне человека или лучше него. В само это определение неявно закладывается идея о конкуренции с человеком и о замене человека. Однако это не в интересах нашей человеческой цивилизации. Я предлагаю другое определение, антропоцентричное, из которого можно выводить принципы этики ИИ как следствия.

Искусственный интеллект – это вычислительные технологии, создаваемые для автоматизации и повышения производительности созидательного интеллектуального труда людей.

Тогда всё сразу становится на свои места. ИИ – это инструмент развития. Не цель, а средство. Не замена человеку, не загадочный новый разум и не повод уподобиться Богу, творящему «по образу и подобию своему».

«ЗС»: А что такое интеллект в нашем человеческом понимании?

К. В.: Пожалуй, этого никто сейчас не знает.

«ЗС»: Наверное, в это все дело. Мы не понимаем, как работает наш мозг, и при этом пытаемся создать его искусственную аналогию?

К. В.: Во‑первых, мы понимаем мозг все лучше и лучше. Огромный объем исследований в области нейрофизиологии продвигает нас в этом понимании. Во‑вторых, аналогия весьма отдаленная. Искусственные нейронные сети лишь вдохновляются некоторыми знаниями из нейрофизиологии.

В основе даже самых современных сетей остается примитивная математическая модель нервной клетки, которую Мак-Каллок и Питтс придумали еще в 1943 году. Элементные базы совершенно разные. Сложный электрохимический процесс передачи возбуждения от клетки к клетке, эволюционировавший миллиарды лет, и бинарные электрические сигналы в интегральных микросхемах, сконструированных людьми. Они в принципе не могут быть аналогом нашего мозга. Инженеры лишь подглядывают отдельные принципы у живой природы, как в бионике.

«ЗС»: В одном из интервью вы говорили о том, что существующие «умные» машины уже начинают выходить из-под нашего контроля и вести себя по-своему. Вы видите тут определенную опасность?

К. В.: Опасность видят все. Об этом уже много написано, и тысячи исследований во всем мире проводятся прямо сейчас. Имеется в виду тот самый прорыв в больших языковых моделях. Нейронная сеть, обученная по терабайтам текстов, вобрала в себя практически все знание, накопленное человечеством, включая огромный пласт текстового контента из Интернета. Она способна отвечать на вопросы, делать краткие изложения, строить план изложения, исправлять собственные ошибки по небольшой подсказке, переводить с одного языка на другой, рассуждать, решать логические и математические задачи, описывать изображения и генерировать изображения по описанию. Большинство этих навыков эмерджентные, модель приобрела их самостоятельно. Не было никаких обучающих выборок для каждого навыка. Главное, мы не вполне понимаем, как это произошло. Мы можем говорить, что данных было много и они были обо всем, что «количество перешло в качество», но такие философские объяснения не компенсируют нашего непонимания и растерянности.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Конец русского Рокамболя Конец русского Рокамболя

До сих пор нет ни одной научной биографии этого человека

Дилетант
Океан в деталях Океан в деталях

Пентхаус в Дубае в стиле европейского минимализма с атмосферой курортного отдыха

SALON-Interior
Модернизатор империи Модернизатор империи

Сергей Витте был центральной политической фигурой предреволюционной эпохи

Дилетант
Спортивная фигура Спортивная фигура

Прежде чем начать заниматься, нужен контекст. И форма

Afternoon Seasons of life
Расплескалась седина Расплескалась седина

Началась новая волна массового обесцвечивания кораллов в Мировом океане

2Xplore
«Азбука» для «Магнита» «Азбука» для «Магнита»

Фокус инвесторов «Магнита» остается на финансовых результатах

Ведомости
Заменили отцов на заводах Заменили отцов на заводах

Юные герои тыла: как дети работали на заводах во время Великой Отечественной

Ведомости
Налоги между строк: почему российские законы внезапно меняются во втором чтении Налоги между строк: почему российские законы внезапно меняются во втором чтении

Из-за чего возникает «расползание» налогов по непрофильному законодательству

Forbes
Схватить, покрутить и нести на анализы: что делать, если укусил клещ Схватить, покрутить и нести на анализы: что делать, если укусил клещ

Как защищаться от клещей, и что делать, если паразит все-таки укусил

Forbes
Еда до востребования Еда до востребования

Прежде всего стоит определиться, чем и как начинять банки

КАНТРИ Русская азбука
О любви и Дягилеве О любви и Дягилеве

Красота, грация, любовь — что вы увидите в Денисе Родькине и Элеоноре Севенард

Moodboard
Стресс в наследство Стресс в наследство

Как на ребенка влияет стресс матери во время беременности?

Здоровье
Раскрыт секретный рецепт римского бетона, который пережил тысячелетия Раскрыт секретный рецепт римского бетона, который пережил тысячелетия

Чем состав и технология производства римского бетона отличались от современного

Inc.
Билет туда-обратно Билет туда-обратно

1200 км без дозаправки — гибридный кроссовер Exlantix ET удивляет

Автопилот
VisionLabs внедрила систему распознавания дипфейков в банках четырех стран VisionLabs внедрила систему распознавания дипфейков в банках четырех стран

VisionLabs внедрил систему обнаружения дипфейков в банки России

Forbes
Эти могут Эти могут

Тест-драйв четырех моделей KGM: Tivoli, Korando, Torres и Rexton

Автопилот
Программа возвращения стройности Программа возвращения стройности

Многие женщины в разные периоды жизни хотели бы снизить вес. Как это сделать?

Добрые советы
Визионеры в балете: Нижинский, Баланчин, Нуреев, Эк Визионеры в балете: Нижинский, Баланчин, Нуреев, Эк

Историк танца — о тех, кто решил пойти против течения и перевернуть балетный мир

РБК
Любовь под пальмами Любовь под пальмами

Как отдохнуть, набраться сил и укрепить отношения в совместном отпуске

Добрые советы
Смена курса лечения Смена курса лечения

Какие результаты у фармпрома и кто смог воспользоваться окном возможностей

Эксперт
Астраханское море Астраханское море

Знакомься, наше российское Мертвое море — озеро Баскунчак

Лиза
Вспомнить всех Вспомнить всех

15 лучших ролей в русских сериалах

Men Today
Узнать за 60 секунд Узнать за 60 секунд

Почему мы стремимся ускорить все процессы и как это влияет на наш мозг

Men Today
Самка шимпанзе из заповедника Будонго вытерла пенис самца листьями после спаривания Самка шимпанзе из заповедника Будонго вытерла пенис самца листьями после спаривания

Как можно судить о зарождении медицины у людей на примере шимпанзе

N+1
Полис на взлет Полис на взлет

Как восстанавливается рынок туристического страхования

Деньги
Михалковы Михалковы

Династия Михалковых: от успеха в кино до признания в ресторанном бизнесе

Караван историй
Разработана первая вакцина от птичьего гриппа для коров Разработана первая вакцина от птичьего гриппа для коров

Ученые разработали первую мРНК-вакцину от птичьего гриппа для коров

ТехИнсайдер
Полис ограниченного действия Полис ограниченного действия

Экономят ли работодатели на ДМС для сотрудников

Деньги
Неприятная правда о чат-ботах c ИИ: они способны выдавать незаконную информацию Неприятная правда о чат-ботах c ИИ: они способны выдавать незаконную информацию

Эксперты выяснили, что многие чат-боты на базе ИИ легко поддаются манипуляциям

Inc.
Ядро Земли понемногу вытекает на поверхность Ядро Земли понемногу вытекает на поверхность

Может ли материал металлического ядра Земли выталкиваться на ее поверхность?

ТехИнсайдер
Открыть в приложении