В химии всегда будет работать правило октета
Благодаря Дмитрию Ивановичу Менделееву уже больше чем полтора столетия среди химических элементов наведён идеальный порядок — каждый элемент занимает свою ячейку в таблице и даже для новых, ещё неоткрытых элементов виртуальная «очередь на квартиру» уже расписана. Его многочисленные труды разошлись на цитаты, как и периодические таблицы — по кабинетам химии и школьным учебникам, Менделеев и память о нём забронзовели. Но можно ли то же самое сказать о его идеях? Есть ли им место в современной науке, живы ли они? Об этом рассуждает доктор химических наук Андрей Иванов, директор Иркутского института химии им. А. Е. Фаворского СО РАН.
Беседу ведёт Наталия Лескова.
— Андрей Викторович, давайте сразу с места в карьер — пригождаются ли идеи Менделеева в вашей научной работе?
— Да, безусловно. Я считаю, что два человека, определившие не просто эпоху, а вообще всю химическую науку в мире и в России, — это Менделеев и Бутлеров. Было много великих и потом, но таких больше не было. Мы все знаем Менделеева как учёного-фундаменталиста, потому что, приходя в восьмом классе в школу, видим таблицу Менделеева, и все знаем его как систематизатора науки. Есть ещё не менее известная, но обросшая байками история про то, как он изучал растворы на примере модельных растворов спирта с водой. Чуть хуже известно, что он как физико-химик изучал газы.
Но есть вторая ипостась его деятельности, о которой говорят мало: Менделеев как организатор науки и как настоящий учёный-практик. Безусловно, если поставить себе задачу, как говорят политики, «прислониться» к наследию великого Менделеева, то можно рассуждать о том, что мы используем его учения о растворах (в конце концов все химики что-то в чём-то всегда растворяют), но я задумался о том, как наш институт опирается на таблицу Менделеева — главное его открытие. Вроде бы химик-органик работает по большому счёту с двумя веществами — с углеродом, водородом и добавленными к ним кислородом, азотом и некоторыми другими элементами, а большую часть таблицы Менделеева органики, на первый взгляд, не используют. Когда я стал анализировать, понял, что сами названия лабораторий в нашем институте, по сути, повторяют таблицу Менделеева.
— Каким образом?
— У нас есть лаборатория галогенорганических соединений, а галогены — это седьмая группа, которую Дмитрий Иванович вынес отдельно. У нас есть лаборатория халькогенорганических соединений. Халькогены — это предыдущая, шестая группа. Лаборатории пниктогенов у нас нет, но есть лаборатория, которая занимается азотсодержащими и фосфорсодержащими органическими соединениями. Кроме того, в истории нашего института есть славная страница в изучении кремний- и германийорганических соединений, это подгруппа углерода. Получается, что систематизация, заложенная Дмитрием Ивановичем, легла в основу организации нашего института — изначальной и нынешней.
У нас есть прекрасные коллективы, которые занимаются изучением химии сера-, селен-, теллурорганических соединений. Причём во всех случаях исследования организуются в логике таблицы. Например, если получают новый оригинальный гетероцикл на основе серы и всячески изучают его свойства, то следом проводят синтез такого же гетероцикла, но с заменой серы на селен (следующий элемент подгруппы серы), а затем на теллур, и обязательно сравнивают поведение этих циклов между собой. Честно говоря, я как-то раньше этот момент упускал, но, готовясь к нашей беседе, чётко увидел эту зависимость.
— Это чисто фундаментальная работа или она нужна для чего-то практического?
— В случае тиофена и селенофена есть очень большой пул прикладных работ совместно с коллегами из Европы. Этим работам уже больше десяти лет. Используя фрагменты тиофена и селенофена, соединённые с пиррольным фрагментом, нашими коллегами из испанского центра фотофизики были получены стёкла с управляемым цветом. В зависимости от того, какое напряжение ты прикладываешь к этому стеклу, оно становится темнее, светлее, краснее, коричневее, синее. То, какой цвет будет у стекла, во многом определяется атомами серы или селена внутри него.
— А зачем нужно делать такие стёкла?
— Например, чтобы изменять их прозрачность по собственному желанию, просто повернув ручку тумблера. Здесь вам и энергоэффективность, и комфортность. а для специальных стёкол в автомобилях, самолётах это вообще незаменимое свойство. Сейчас в мире очень много работ по тематике интеллектуальных стёкол. Или, например, представьте, что такое стекло соединено со сверхчувствительным датчиком на какой-то токсин, и вы получаете цветовую индикацию на него. Для этого исследования мы создали вещества, на основе которых наши коллеги синтезировали и изучили новые материалы.
— Есть ли в вашем институте ещё какие-то разработки, которые опираются на такие исследования?
— У нас много разработок с европейскими и китайскими коллегами. С последними, например, мы разработали на основе азотсодержащих гетероциклов очень чувствительные сенсоры на фтор. Фтор — это большая драма для Китая. Там огромное количество людей с чёрными или жёлтыми зубами, потому что они пили скважинную воду, которая в некоторых районах содержит много фтора. Людей из определённых провинций узнавали по зубам — в Китае на этот счёт даже имеется поговорка. Сейчас она неактуальна, потому что китайцы научились избавляться от фтора, в том числе детектируя его на очень чувствительных уровнях с помощью сенсоров типа такого, который мы сделали с нашим коллегой из Китайской академии наук.
— Неужели и за это можно сказать спасибо Дмитрию Ивановичу?
— Я бы сказал так: во всех случаях, будь то галоген-органика, халькоген-органика, пниктогены в органических соединениях, — изучение свойств происходит ровно в логике таблицы, как она изображена. Вся систематика нашей работы на протяжении почти всего времени существования института с этим так или иначе связана.
Отдельно надо сказать про подгруппу кремния: наш институт знаменит не только работами по ацетилену и не только наследием академика Фаворского, члена-корреспондента Шостаковского и академика Трофимова*, но и работами, известными благодаря академику Воронкову, который занимался кремнийорганическими соединениями. Вообще научная работа Менделеева началась с кремния: кремнезёмов, стёкол, силикатов, с изучения неорганического кремния. а Воронков изучал органический кремний, точнее — всю эту вертикаль: углерод-кремний-германий. В этом смысле наследие Михаила Григорьевича Воронкова тоже строго регламентировано теми рамками, которые заложил в науке Менделеев.
— Можно ли назвать химию органического кремния альтернативной углеродной биохимии?
— Есть такой известный ситком «Теория большого взрыва», в котором самый яркий персонаж — Шелдон — однажды пытался из конструктора собрать ДНК кремниевой формы жизни. Ваш вопрос напомнил мне этот эпизод. А если серьёзно, то химия кремния, скорее, не альтернатива, а дополнение. Изначально учёные предполагали, что у кремния биологические функции отсутствуют, и, наверное, единственным, что было общего между кремнием и биологической активностью, — это очень опасное заболевание под названием силикоз. Страшное заболевание, поражавшее в первую очередь шахтёров и рабочих каменоломен. Однако потом в широкий обиход вошли кремнийорганические соединения, и тут вся недооценённость биологического кремния стала понятна.