Как устроен объяснимый ИИ и какие проблемы он решает

РБКHi-Tech

Интеллект, понятный каждому

Как устроен объяснимый ИИ и какие проблемы он решает

Автор: Мария Решетникова

Современные разработки в сфере искусственного интеллекта упираются в проблему «черного ящика», которая ставит под сомнение объективность и точность моделей. Решением может стать прозрачный и объяснимый ИИ.

Объяснимый искусственный интеллект представляет собой следующий шаг в развитии ИИ, который сделает технологию более понятной и прозрачной. Внедрение объяснимого ИИ позволит расширить сферу его применения на отрасли, которые работают с потенциально чувствительными данными,— медицину, финансы, судопроизводство и другие.

Что такое объяснимый ИИ

Объяснимый ИИ (Explainable AI, XAI)—это направление исследований в области искусственного интеллекта. Оно стремится создать системы и модели, способные объяснять свои действия и принимать решения понятным для людей образом, чтобы повысить доверие к ИИ. Объяснимый ИИ используется для описания алгоритмов, а также ожидаемых последствий их работы и возможных отклонений. Для этого используются методы визуализации, более простые алгоритмы, а также интерактивные интерфейсы с подсказками.

Благодаря XAI, а также объяснимым процессам машинного обучения организации могут получить доступ к процессам принятия решений, лежащим в основе технологии, и вносить в них коррективы. Он также позволяет улучшить взаимодействие с пользователями, повышая доверие с их стороны.

Характеристики XAI

Объяснимый ИИ должен включать в себя три основных элемента.

Точность прогноза. Запустив моделирование и сравнив выходные данные XAI с результатами в наборе обучающих данных, можно определить точность работы модели. Самый популярный метод, используемый для этого,—это локальные интерпретируемые модельно-агностические объяснения (LIME), которые позволяют объяснить каждый прогноз нейросети. Они анализируют входные данные после того, как те проходят через алгоритм, и сравнивают полученный результат с прогнозируемым. Для этого LIME используют собственный специально обученный на этих данных алгоритм. Сравнение позволяет понять ход рассуждения исходной нейросети.

Прослеживаемость. Она достигается в том числе за счет ограничения способов принятия решений и установления более узкой области применения правил и функций машинного обучения. Примером метода отслеживания XAI является DeepLIFT (Deep Learning Important FeaTures—важные функции глубокого обучения), который сравнивает работу каждой точки («нейрона») нейросети с эталонным показателем и показывает зависимости между ними.

Объясняемость и интерпретируемость. Это показатели, которые отображают, насколько наблюдатель может понять причину принятия решения, а также предсказать вероятность успеха работы модели. Существуют специальные технологии, которые обеспечивают визуализацию этих показателей. Например, What-if—инструменты для визуального исследования поведения обученных моделей, тестирования их производительности в гипотетических ситуациях и анализа важности различных функций данных.

Преимущества XAI

Внедрение объяснимого ИИ дает ряд положительных эффектов как в коммерческом, так и в государственном секторах:

  • повышение производительности, более быстрое выявление ошибок в модели;
  • укрепление доверия со стороны клиентов и пользователей;
  • снижение регуляторных и других рисков.

В некоторых странах внедрение объяснимого ИИ станет обязательным требованием для компаний со стороны государств. Европарламент уже принял закон под названием AI Act, который устанавливает правила и требования для разработчиков моделей ИИ. Они должны обеспечить прозрачность работы таких систем.

Технологии XAI

Для создания объяснимого ИИ применяются следующие основные техники машинного обучения:

  • деревья решений выдают четкое визуальное представление процесса принятия решений ИИ;
  • системы на основе правил выводят алгоритмические правила работы в понятном для человека формате;
  • байесовские сети, или модели вероятностей, которые показывают причинно-следственные связи в работе алгоритма и объясняют неопределенности;
  • линейные модели демонстрируют, как каждый входной параметр влияет на решение нейросети.

Перспективы внедрения XAI

Несмотря на все плюсы XAI, внедрение такого ИИ сталкивается с рядом препятствий, таких как:

отсутствие консенсуса по определениям нескольких ключевых понятий—некоторые исследователи используют термины «объяснимость» и «интерпретируемость» как синонимы, а другие четко разделяют их;

недостаток практических рекомендаций по поводу того, как выбирать, внедрять и тестировать XAI;

отсутствие понимания, должен ли объяснимый ИИ быть понятным для обычных пользователей.

Отдельные исследователи предложили идею «белого ящика», или моделей, которые будут объяснимыми и прозрачными. Так, систему ИИ можно разбивать на модули, каждый из которых может быть интерпретирован, либо изначально строить модели с соблюдением правил прозрачности, чтобы разработчик не терял контроль над ситуацией.

Однако другие эксперты считают, что и «белый ящик» не решит проблему доверия к ИИ со стороны людей, у которых нет технического образования. По их мнению, XAI и объяснимый ИИ — это лишь часть более широких усилий для создания искусственного интеллекта, работа которого будет понятна любому человеку.

Тайны «черного ящика»

XAI использует специальные методы, позволяющие отслеживать и объяснять каждое решение, принятое в процессе машинного обучения. ИИ же обучается с помощью алгоритма, архитектура которого не до конца понятна. Эту проблему принято называть «черным ящиком»: даже если система дает точные ответы, зачастую сложно выяснить, как именно она пришла к такому решению.

Аналогичным образом сложно понять, когда именно система начала ошибаться в ответах и чем это было вызвано. Профессор компьютерных наук Университета Луисвилля Роман Ямпольский в своей работе «Необъяснимость и непостижимость искусственного интеллекта» отмечал: «Если все, что у нас есть,—это «черный ящик», то невозможно понять причины сбоев и повысить безопасность системы. Кроме того, если мы привыкнем принимать ответы ИИ без объяснения причин, мы не сможем определить, не начал ли он давать неправильные или манипулятивные ответы. Это чрезвычайно опасная дорога, на которую мы ступаем».

Преимущества «черного ящика» заключаются в том, что такое обучение происходит быстрее и стоит дешевле, а также позволяет давать системе для обучения сразу большой массив данных. Современные модели, такие как GPT и Alpha Zero, обучаются именно по модели «черного ящика». Так, OpenAI —разработчик ChatGPT, DALL-E и других ИИ-систем—не стала раскрывать набор данных, использованных для обучения модели GPT-4.

Участники сообщества раскритиковали действия компании, отметив, что они затрудняют разработку средств защиты от угроз, исходящих от систем ИИ. Вице-президент по информационному дизайну Бен Шмидт, который работает в стартапе моделей ИИ с открытым исходным кодом Nomic AI, считает, что выход GPT-4 «может положить конец «открытому» ИИ».

Такой подход имеет и другие негативные стороны—в «черном ящике» сложнее выявить предвзятость алгоритма и оценить качество входных данных. На эту проблему указали исследователи из Пало-Альто, центра Кремниевой долины. Они отмечали, что при обучении больших языковых моделей используются массивы данных из интернета, которые не отражают интересы всех групп населения, поскольку у некоторых из них просто нет доступа к Cети.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Рубен Ениколопов: «В вопросах на миллиарды долларов нельзя консультироваться с ChatGPT» Рубен Ениколопов: «В вопросах на миллиарды долларов нельзя консультироваться с ChatGPT»

Рубен Ениколопов: сможет ли Россия в одиночку совершить технологический рывок

РБК
«Что знает Мариэль?»: зачем колкое драмеди меняет местами детей и родителей «Что знает Мариэль?»: зачем колкое драмеди меняет местами детей и родителей

Как «Что знает Мариэль?» по-новому рассматривает детско-родительские отношения

Forbes
Александр Архангельский: «Может ли ИИ в перспективе написать «Войну и мир»? По-моему, может» Александр Архангельский: «Может ли ИИ в перспективе написать «Войну и мир»? По-моему, может»

Профессор ВШЭ Александр Архангельский — о судьбе бумажных книг и их авторов

РБК
Как заснуть буквально за минуту: способ, который все мы бессознательно используем Как заснуть буквально за минуту: способ, который все мы бессознательно используем

Как помочь своему организму заснуть?

Maxim
Ирина Калабихина: «Демографический взрыв уже у нас за спиной» Ирина Калабихина: «Демографический взрыв уже у нас за спиной»

Экономист Ирина Калабихина — что с нами будет дальше и хватит ли всем места?

РБК
Александр Лабас: не авангардист, не соцреалист Александр Лабас: не авангардист, не соцреалист

Голос А. Лабаса — сложный, полифоничный, подчас ускользающий от прямых смыслов

Монокль
Сергей Шумский: «У роботов не будет инстинкта власти, как у человека» Сергей Шумский: «У роботов не будет инстинкта власти, как у человека»

Минувший год имеет шансы войти в историю как время взрывного роста нейросетей

РБК
«Черный квадрат» раздора «Черный квадрат» раздора

Краткая история главной картины ХХ века

Weekend
Много шума — и ничего Много шума — и ничего

Антирейтинг — топ-7 наиболее значимых технологических провалов нашего времени

РБК
Вот оно какое, наше лето Вот оно какое, наше лето

Чем занять ребенка на даче: советы для детей любого возраста

Лиза
Доставка в космос: как на орбиту доставляют малые грузы и зачем там дата-центр Доставка в космос: как на орбиту доставляют малые грузы и зачем там дата-центр

Возможна ли доставка квадрокоптерами не на близлежащую улицу, а в космос?

Популярная механика
Нестор Энгельке Нестор Энгельке

Нестор Энгельке внес топоропись в энциклопедию современного искусства

Собака.ru
IIoT: есть где развернуться IIoT: есть где развернуться

Разработчики прогнозируют рост рынка продуктов для индустриального интернета

Монокль
Квадратная правда: как расширить границы квартиры, не покупая новую Квадратная правда: как расширить границы квартиры, не покупая новую

Как маленькая квартира может стать больше большой

Inc.
Мобилизация-1914: эмоции россиян Мобилизация-1914: эмоции россиян

Кто определяет «национальные интересы»?

Дилетант
Нина Гребешкова: «Лёня на меня действовал магически» Нина Гребешкова: «Лёня на меня действовал магически»

В его присутствии мне хотелось быть умнее. Не хохотать без особой причины

Караван историй
Откуда что пошло на флоте Откуда что пошло на флоте

Повседневная жизнь на парусном военном корабле XVIII века

Наука и техника
Из портов на биржу Из портов на биржу

Угольщики стремятся расширить сбыт на внутреннем рынке на фоне падения экспорта

Ведомости
Традиционная стабильность Традиционная стабильность

Какое место в энергетике будущего будут занимать уголь, нефть и газ

Ведомости
Американские горки Американские горки

Группа БКС возобновила торги американскими бумагами через свой инвестбанк

Ведомости
Мошенники делают ставки Мошенники делают ставки

Как мошенники используют аккаунты граждан в букмекерских конторах

Ведомости
Установка для очистки отработанных масел УОМ-3М(100) Установка для очистки отработанных масел УОМ-3М(100)

Как установка УОМ-3М(100) очищает отработанное моторное масло

Наука и техника
«Пишите… А. Куприн» «Пишите… А. Куприн»

Эмиграция сложилась для Куприна не просто трудно, а скорее — трагически

Дилетант
Главное – остаться незамеченным Главное – остаться незамеченным

В чем состоит военная (а возможно, и не только) хитрость стелс-технологии?

Наука и техника
Золотой век английской карикатуры Золотой век английской карикатуры

«Отечество карикатуры и пародии» — об Англии Георгианской эпохи

Дилетант
Вяземские Вяземские

Происходивший от Рюрика княжеский род Вяземских известен ещё со Средневековья

Дилетант
Кто открыл лазейки в вузы Кто открыл лазейки в вузы

Школьные олимпиады становятся местом отработки способов незаконного поступления

Монокль
Денис Власенко: «Все-таки мир не черно-белый» Денис Власенко: «Все-таки мир не черно-белый»

Денис Власенко о «супергеройских» ролях и о том, каково это в возрастном гриме

Ведомости
Автономный шестилапый робот «MICROBRO» Автономный шестилапый робот «MICROBRO»

Как создать ровер, который сам везет ваш багаж туда, куда вам нужно?

Наука и техника
Рабби Давид из люфтваффе Рабби Давид из люфтваффе

В 2019 году Бундестаг одобрил введение в Германии военного раввината

Дилетант
Открыть в приложении