Каким образом свет «питает» растение и как вызывает химические реакции?

Наука и жизньПрирода

Фотосинтез — «игра с огнём» для растения

Доктор биологических наук Василий Птушенко

Фото Оксаны Птушенко

Свет — основа жизни подавляющего большинства растений, если не говорить о немногих растениях-паразитах. Именно свет даёт им энергию для роста, «питает» их, что позволяет называть растения фототрофными (дословно с греческого — питающимися светом) организмами. Однако парадоксальным образом свет одновременно представляет большую опасность для растений. Он несёт настолько «концентрированную» энергию, что она позволяет растению решить все его биосинтетические задачи, осуществить химические реакции, которые не идут сами по себе, но в то же время способен вызвать неконтролируемые разрушительные химические реакции. Почему так получается, и как растение избегает такой опасности?

Этот вопрос, поставленный весьма общим образом, можно разбить на несколько более узких. И первые два из них — каким образом свет «питает» растение и как вызывает химические реакции?

Фотохимические реакции

Начать проще со второго вопроса. При химической реакции исходная молекула превращается в другую, в некотором смысле более стабильную (если говорить точнее, в ту, у которой ниже химический потенциал). Конечно, хотя молекулы различаются по своей устойчивости, любая из них, даже молекула очень высокореакционного соединения, в какой-то мере стабильна, иначе бы она вообще не существовала — атомы или, по крайней мере, какие-то группы атомов разлетелись бы, не образовав молекулы. Но почему-то часть таких молекул «выскакивает» из своего устойчивого состояния и «сваливается» в другое устойчивое состояние. Так брызги воды вылетают из стакана, перелетают через край и падают на пол. Причины, подбрасывающие некоторые капли воды до высоты края стакана, бывают разные: стакан может подрагивать, стоя на столике в поезде; брызги вызывает и струя воды или даже отдельные капли, упавшие в стакан с большой высоты. Точно так же и молекула способна подняться из своей «энергетической ямы», соответствующей её устойчивому состоянию, и потом «перевалить через край». Необходимый для этого избыток энергии она может получить от других молекул. Чем выше температура, тем больше энергия всех молекул, и нужный избыток проще получить — поэтому при повышении температуры химические реакции идут быстрее. Другой вариант: молекула поглощает свет и тем самым также приобретает избыточную энергию. Такие химические реакции называются фотохимическими.

«Энергетический профиль» химической реакции. Для того чтобы реакция произошла, молекула реагента должна сначала «взобраться» на вершину (хотя, если пользоваться образами, то, скорее, на перевал) энергетического барьера, разделяющего реагент и продукт реакции. Чем больше высота барьера (так называемая энергия активации), тем сложнее молекулам реагента преодолеть его, и тем медленнее будет протекать реакция.

Свет — замечательный источник энергии для химических реакций. Один квант видимого света содержит энергию, огромную по сравнению с той характерной энергией, которую имеют молекулы «сами по себе», за счёт теплового движения — примерно в 70—130 раз бóльшую. Вот только проблема: не всякая молекула не всякий свет может поглотить. Чтобы поглощение было возможно, разница энергий между двумя состояниями молекулы должна быть равна энергии кванта света. Для молекул как микроскопических частиц возможны не любые состояния, а только соответствующие определённым, дискретным уровням энергии, то есть молекулу нельзя чуть-чуть возбудить, есть некоторая минимальная величина, на которую молекула может изменить свою энергию. А у многих молекул разница в энергии электронных уровней заметно больше той энергии, которую несёт квант видимого света. Его энергии просто не хватает, чтобы «забросить» молекулу хотя бы на ближайший верхний уровень, в возбуждённое состояние. И лишь у некоторых веществ первый возбуждённый электронный уровень энергии лежит не слишком высоко — настолько, что энергии кванта видимого света хватает, чтобы молекула оказалась на этом уровне. Такие вещества могут поглощать свет, и называют их пигментами.

Хлорофил

У растений множество самых разных пигментов, и какой только свет они не поглощают! Вспомним разнообразную окраску цветков и плодов растений и даже листьев в осеннюю пору. Однако основной пигмент растений — хлорофилл. Он способен поглощать как синий, так и красный свет — в итоге и в отражённом, и в прошедшем через лист свете остаётся в основном зелёный. В отличие от всех остальных пигментов в растении для него созданы особые условия: хлорофилл сидит в специальном белке — так называемом фотосинтетическом реакционном центре, а рядом с ним в этом же белке размещены другие молекулы, с которыми он должен быстро вступить в фотохимическую реакцию, как только поглотит свет.

Строение молекулы хлорофилла. Голубыми сферами показаны атомы углерода, красными — кислорода, синими — азота, светло-коричневой сферой — атом марганца.

Такие особые условия для хлорофилла — неспроста. Дело в том, что, для того чтобы вступить в фотохимическую реакцию, молекуле мало быть пигментом: поглотив свет и перейдя в возбуждённое состояние, она должна продержаться в нём достаточно долго, чтобы успеть прореагировать с чем-то ещё. У многих молекул пигментов время жизни возбуждённого состояния слишком короткое. А вот у хлорофилла оно уже достаточное, чтобы успеть осуществить химическую реакцию. Конечно, по нашим меркам, это тоже мгновения — наносекунды, однако если все условия для протекания реакции подготовлены, то это вполне возможно.

Задача фотосинтеза

Чтобы объяснить, как именно растение использует энергию света, поглощённого хлорофиллом, можно было бы подробно описать последовательность всех реакций, которые происходят в хлоропласте (той клеточной органелле, в которой сосредоточен весь фотосинтетический аппарат растения). Однако это было бы примерно то же, что описывать в деталях внутреннее устройство какого-нибудь сложного прибора. Трудно сразу воспринять обилие деталей, каждая из которых в своё время оказалась гениальной находкой изобретателя, и понять принцип работы устройства. Проще подойти к этому вопросу с конца: а что, собственно, требуется от фотосинтетического аппарата?

Как хорошо известно, фотосинтез заключается в том, что растение поглощает из воздуха углекислый газ (CO2) и превращает его в органические вещества. С этим сопряжён ещё один процесс — расщепление молекулы воды, при котором два атома кислорода (из двух молекул воды) образуют молекулярный кислород, уходящий из растения в атмосферу. Отщепляемые от молекулы воды ионы водорода остаются в водной среде клетки. А что нужно для того, чтобы превратить CO2 в органику?

Посмотрим на вопрос с другой стороны: а что происходит при превращении органических веществ в CO2? С одной из разновидностей этого процесса все сталкивались — это горение. Органические вещества, например целлюлоза (основной компонент древесины, полимер глюкозы), реагируют с кислородом, происходит окислительно-восстановительная реакция. Кислород, чрезвычайно электроотрицательный элемент, то есть способный притягивать к себе валентные электроны почти любых других элементов, отбирает их у молекул целлюлозы. Разумеется, атомы, у которых кислород утащил электроны, тоже должны куда-то деться, и при полном сгорании они устремляются вслед за своими электронами, в итоге образуя соединения с кислородом (оксиды), в которых основная электронная плотность смещена к кислороду, хотя и у его партнёра тоже кое-что остаётся. Партнёры эти — углерод и водород, продукты горения — их оксиды, углекислый газ и вода (если мы говорим о полном сгорании; при неполном сгорании могут образовываться и разнообразные другие, частично окисленные соединения). То же самое — не по детальному механизму, но по конечному результату — происходит и в живых организмах при дыхании: глюкоза окисляется кислородом до воды и CO

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Режиссер Влад Козлов: “Весь Голливуд мне помогал” Режиссер Влад Козлов: “Весь Голливуд мне помогал”

Как упорство и одержимость способны сдвинуть голливудские холмы

Men Today
Давай поженимся! Разбираемся, как подтолкнуть любимого к разговору на эту тему Давай поженимся! Разбираемся, как подтолкнуть любимого к разговору на эту тему

Вы уже вместе не один год, а предложения руки и сердца не поступало. Что делать?

Лиза
Самый энергичный свет Самый энергичный свет

История открытия и некоторые факты о гамма-лучах

Наука и жизнь
Сошедший с орбиты Сошедший с орбиты

Как австралийцы изобрели «орбитальный» двигатель внутреннего сгорания

Наука и жизнь
Женщина хочет крови: что такое femgore и как нас пугают безумными героинями в кино Женщина хочет крови: что такое femgore и как нас пугают безумными героинями в кино

Как под страшной маской femgore скрываются сатира и социальная критика

Forbes
Деньги или дружба? Деньги или дружба?

Подруга занимает деньги и не отдает. Как вернуть долг и сохранить отношения?

Лиза
Петр Ануров: Это волнующе и рискованно Петр Ануров: Это волнующе и рискованно

Как продюсер Петр Ануров выбирает проекты и собирает звёздные составы

Ведомости
Савва и Мария Савва и Мария

Мария Червоткина о материнском фэшн-пути и окситоциновых слезах

Собака.ru
А как у них? А как у них?

6 рецептов пасхальных куличей из разных стран

Лиза
США в долгах по шею, но пока не тонут США в долгах по шею, но пока не тонут

На фоне крестового похода Трампа вопрос госдолга США приобретает особую остроту

Монокль
Коллеги, не ссорьтесь! Коллеги, не ссорьтесь!

Какие могут быть эффективные способы разрешения у разных рабочих конфликтов?

Лиза
10 спортсменов, построивших бизнес на игровых номерах: от Овечкина до Джордана 10 спортсменов, построивших бизнес на игровых номерах: от Овечкина до Джордана

Как спортсмены увековечивают в брендах не только свое имя, но и игровой номер

Forbes
День любви День любви

Реальная история святого Валентина, не имевшая отношения к романтике

Дилетант
Дочери феи и дракона: как сестры Чынг собрали армию и освободили Древний Вьетнам Дочери феи и дракона: как сестры Чынг собрали армию и освободили Древний Вьетнам

Как сестры Чынг освободили Вьетнам из-под гнета Китая?

Forbes
Своей иранской тропой Своей иранской тропой

Современный Иран надеется сохранить государство и суверенитет

Монокль
Дуэты на тарелке Дуэты на тарелке

Эти сочетания продуктов принесут двойную пользу вашему организму

Лиза
Как мы не совпадаем Как мы не совпадаем

Почему мы можем не совпадать с потенциальными партнерами?

Psychologies
«Мамонты следующие»: Colossal Biosciences вернула к жизни вымерших 10 тысяч лет назад лютоволков «Мамонты следующие»: Colossal Biosciences вернула к жизни вымерших 10 тысяч лет назад лютоволков

Как ученым Colossal Biosciences удалось произвести на свет щенков лютоволка

VC.RU
Всё в цвету Всё в цвету

Обсудили с экспертом, как защитить чувствительную кожу в сезон пыльцы

Лиза
Психологический портрет: что такое дисморфофобия, или синдром Квазимодо Психологический портрет: что такое дисморфофобия, или синдром Квазимодо

Что нужно знать о дисморфофобии?

Forbes
Если села батарейка Если села батарейка

20 способов восстановиться за 15 минут

Лиза
Заводской брак или нет: юрист рассказал, как переспорить автосалон Заводской брак или нет: юрист рассказал, как переспорить автосалон

Как определить, считается поломка производственным дефектом или нет?

ТехИнсайдер
Как первый полет в космос повлиял на моду и дизайн: от русского космизма до визуальной культуры после Гагарина Как первый полет в космос повлиял на моду и дизайн: от русского космизма до визуальной культуры после Гагарина

Как философия русского космизма сформировала визуальную культуру XX-XXI веков?

ТехИнсайдер
Глобализация по-азиатски: как Восток диктует моду, финансы и контент Глобализация по-азиатски: как Восток диктует моду, финансы и контент

Почему Запад больше не задает моду, а учится у Азии

Правила жизни
Со льдом и безо льда Со льдом и безо льда

О достижениях Евгении Медведевой знают все. А чем она готова удивить в будущем?

VOICE
Нашу ближайшую соседку галактику Малое Магелланово Облако рвет на части Нашу ближайшую соседку галактику Малое Магелланово Облако рвет на части

Притяжение Большого Магелланова Облака может разрывать Малое Облако на части

ТехИнсайдер
Личное пространство Личное пространство

Респектабельный минимализм с авторскими решениями и иконами дизайна

SALON-Interior
Доступная и комфортная Арктика Доступная и комфортная Арктика

Какие архитектурные новации стоит внедрять в полярных городах

Эксперт
Жизнь на свободную тему Жизнь на свободную тему

Как вырастить ребенка уверенным, жизнерадостным и устойчивым?

Psychologies
ИИ проверят на дырки ИИ проверят на дырки

Минцифры проведет эксперимент по внедрению ИИ в региональные «Госуслуги»

Ведомости
Открыть в приложении