Чем занимается астрохимия, когда и как она выделилась в самостоятельную науку

Знание – силаНаука

Зачем нужна астрохимия?

О том, чем занимается астрохимия, когда и как она выделилась в самостоятельную науку, мы говорим с Валерием Ивановичем Шематовичем, заведующим отделом исследований Солнечной системы Института астрономии РАН, доктором физико-математических наук.

«Знание – сила»: Валерий Иванович, долгое время была наука астрономия, в прошлом веке к ней добавилась в качестве самостоятельного направления исследований астрофизика, то есть физика, связанная со звездами, межзвездной средой. Сейчас довольно часто упоминают астрохимию и астробиологию. Если начать с астрохимии, это уже самостоятельное направление научных исследований, вполне самодостаточное?

Валерий Шематович: В принципе да. С этим можно согласиться. Международный астрономический союз давно уже проводит симпозиумы по астрохимии. Симпозиум МАС № 178 «Молекулы в астрофизике: пробы и процессы», на котором я присутствовал в 1996‑м, проходил в Лейдене, и это был уже третий симпозиум МАС по астрохимии. А в 2023 году был проведен восьмой симпозиум МАС по астрохимии.

Что такое астрохимия с формальной точки зрения? Это изучение химических процессов в астрофизических средах.

«ЗС»: Это и звезды, и межзвездные облака?

В. Ш.: Тут требуется уточнение. До астрохимии уже были космохимия и молекулярная астрофизика. Три самостоятельных направления исследований. Они во многом пересекаются. И поэтому сказать, что вот эта область относится только к астрохимии, сложно. Классические астрофизики частенько говорят: ну что вы нам опять про астрохимию? Есть молекулярная астрофизика, то есть астрофизика, которая описывает процессы образования молекул. А молекулы интересны тем, что они светят на низких уровнях энергии. И, в общем, на низких частотах, поставляя таким образом информацию об условиях в холодных областях межзвездной среды.

«ЗС»: Не только светят, еще линии поглощения могут давать, если на просвет.

В. Ш.: И светят, и линии поглощения дают. Поэтому от них можно получить информацию о холодных областях и нашей галактики, и Вселенной, по большому счету. Потому что, когда мы смотрим излучение атомов, то это преимущественно излучение с уровней с высокой энергией возбуждения, это либо оптический диапазон, либо ультрафиолет. А молекулы интересны тем, что они приносят информацию о температуре и скорости в межзвездных облаках. Для физиков самое интересное прежде всего не концентрация, а именно температура и скорость. Еще в астрофизике важную роль играет спектроскопия: мы видим те излучения, которые приходят к нам и наблюдаются с помощью телескопов. По ним можно судить о том, какой химический состав у астрофизического объекта, который мы изучаем. Что касается космохимии, ею у нас занимается Институт геохимии и аналитической химии имени В. И. Вернадского РАН, который является одним из законодателей моды в космохимии. Это изучение химического состава различных космических тел, прежде всего метеоритов, которые упали на Землю. Собственно, этим и занимаются космохимики. Они в лаборатории изучают состав, т. к. у них уже есть объект, они держат его в руках.

«ЗС»: Получив экспериментальные данные, они пытаются объяснить, как возник такой состав?

В. Ш.: Да. С накоплением информации понемногу стало ясно, насколько сложен с химической точки зрения – есть такой термин «химическое разнообразие», – насколько сложен тот внешний мир, ближний и дальний космос, который мы наблюдаем. Говоря о ближнем космосе, я имею в виду Солнечную систему. Та же астрохимия для Солнечной системы «работает», и космохимия, и молекулярная астрофизика – тоже.

«ЗС»: Они пересекаются, эти три научных направления, но тем не менее они все-таки более-менее самостоятельны?

В. Ш.: У них есть свои критические точки. Скажем, то, что нам не могут дать космохимия либо молекулярная астрофизика, дает астрохимия.

«ЗС»: Как возникает химическое разнообразие космоса? Благодаря химическим процессам?

В. Ш.: Вопрос, какие реакции, какие химические процессы? Мы все помним, что раньше предполагалось, будто космос холодный и пустой, потому что есть очень жесткие излучения, которые не позволяют существовать никакому химическому разнообразию. Атомы есть, галактические космические лучи, и не более того. Где-то с 30‑х годов прошлого столетия, когда методы радионаблюдений стали формироваться, а спектроскопия работала в основном на атомных спектрах, появились первые данные о молекулах. Нашли CH – метилидин, самые простые двухатомные молекулы. Позже мы узнали, что весь космос, все окружающее нас вещество, – это преимущественно водород, либо атомарный, либо молекулярный. Как только мы имеем дело с холодной средой, значит, молекулярный. Это гомо-ядерная молекула, и она не светит. Кроме линии 21 сантиметр. Поэтому нам сложно наблюдать и такие молекулы как Н2, О2, N2. Нам интересны полярные молекулы, когда есть некое направление, вращение вокруг которого сопровождается излучением фотонов с очень низкими энергиями. Самый классический пример – СО, угарный газ, являющийся довольно обильной молекулой в межзвездной среде, у него самый низкий вращательный переход соответствует температуре всего лишь в несколько градусов Кельвина. И это нам позволяет видеть очень холодные области светимости. К счастью, эта молекула оказалась довольно обильной.

«ЗС»: Но это в радиодиапазоне?

В. Ш.: Да. При таких температурах может быть только радиодиапазон. Продолжим разговор об астрохимии. Стоит упомянуть двух американских ученых, один из них – химик по образованию, Эрик Хербст (род. 1946), а второй – астрофизик Александр Далгарно (1928—2015). Мне посчастливилось встречаться на симпозиумах по астрохимии с обоими. Кстати, Уильям Клемперер, руководитель Эрика Хербста, тоже астрофизик. Ими были опубликованы в 1973 году статьи, где впервые была предложена химическая модель молекулярных облаков, модель химического разнообразия тех темных областей межзвездной материи, где возникают звезды. Они создали первые химические модели, которые были относительно простыми. Важно было поймать энергетический «драйвер», если можно так выразиться. Потому что химия может протекать, только когда у вас есть приток энергии. Если у вас нет притока энергии, то химия поработает и в какое-то равновесное или неравновесное состояние придет. Оказалось, что в основном молекулы наблюдали в холодных областях, хотя и в звездах видят простейшие молекулы, но более-менее сложные молекулы видят в холодных, так называемых темных молекулярных облаках. А эти объекты очень интересны, потому что там рождаются звезды, там возникают протопланетные диски и планетные системы. Современная астрохимия как раз начинает свою работу в этой области. Хербст и Далгарно предложили первые химические модели для холодных и темных молекулярных облаков в 1973‑м, а за последующие 20 лет успел появиться довольно большой объем информации о химическом разнообразии межзвездных облаков. Исследованиями занялось немало людей, пришедших из химии, которые знают, как протекают химические процессы. Среда очень холодная, энергии очень мало. В основном энергия приходила от галактических космических лучей, либо там, где молодые звезды рождались, имелось ультрафиолетовое излучение. Но ультрафиолетовое излучение опасно тем, что оно и вполне эффективно разрушает молекулы. По мере того, как совершенствовались радио- и ИК-телескопы, как их удавалось вынести в открытый космос, чтобы избежать влияния нашей земной атмосферы, получались все более интересные данные. Потому что земная атмосфера, к сожалению, поглощает излучение самой интересной молекулы, а именно, молекулы воды. Есть целое направление в астрохимии, которое изучает образование молекул воды в разных объектах. По понятным причинам это уже важно для астробиологии – зачем молекулы воды как таковые? Но об этом позже.

И вот за 20 лет произошло становление астрохимии. Пришли специалисты по наблюдениям, радионаблюдениям. Для качественных радионаблюдений необходим некоторый уровень совершенства техники – детекторов, усилителей и так далее. То есть своя достаточно продвинутая наука. Пришли химики, которые знают, как протекают реакции, как это считать вообще, какие для расчетов молекулярные данные нужны. И пришли математики, которые знают, как с такими системами работать. Химические системы, они всем хороши, но они с точки зрения математики очень жесткие, нелинейные. То есть вы красивую химическую схему нарисовали, как все должно работать, но появляется маленькая примесь, и ваша химия начинает давать совершенно другие результаты, становится неустойчивой и так далее. Поэтому нужно математически правильно все решать. (Я вот как раз представитель математики, который был вовлечен в астрохимию). Ну и плюс ко всему астрофизики, естественно, которые должны определить, в каких объектах какие характерные температуры, какие плотности.

Основное отличие астрохимии от лабораторной химии в том, что в астрохимии химические процессы протекают на очень больших масштабах времени. Так, например, в молекулярном облаке образуются так называемые дозвездные ядра, в которых должны рождаться звезды. Известно из наблюдений, что в этих дозвездных ядрах температура около и ниже 10 Кельвинов, плотность 10 тысяч частичек в кубическом сантиметре. У нас не всегда получается на лабораторных установках такого вакуума достичь. А уж для температуры в 10 Кельвинов нужно столько жидкого гелия извести, чтобы охладить систему… То есть в лаборатории воспроизвести такие условия очень непросто. Есть только несколько лабораторных установок в мире, которые позволяют воспроизвести такие условия, но даже не по плотности, а чтобы померить хотя бы скорости химических реакций при таких низких температурах. Собственно, поэтому часто используются теоретические оценки параметров химических реакций при 10 Кельвинах, но всегда требуется подтверждение в лаборатории, что и является одной из актуальных задач уже лабораторной астрохимии. Вот для скоростей химических реакций при 300 Кельвинов – комнатной температуре – есть большая база данных.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Человеческий фактор Человеческий фактор

Как голландцы спасли свои каналы, а упавший самолет – целый район?

Вокруг света
Уберите руки от телефона: чем опасны «пьяные» посты в соцсетях Уберите руки от телефона: чем опасны «пьяные» посты в соцсетях

Почему важно воздерживаться от чересчур эмоциональных постов в соцсетях?

Psychologies
Опасный архипелаг в Сердитом море Опасный архипелаг в Сердитом море

Как открывали «Острова Россиян», которые стали французской колонией

Вокруг света
Чем страсть отличается от любви? Чем страсть отличается от любви?

Почему мы выбираем болезненные отношения и как поддерживать интерес к партнеру?

Psychologies
Оттолкнуться от дна Оттолкнуться от дна

Из-за чего могут исчезнуть десятки российских рек?

Наука
«Человек с камерой»: шесть женских автобиографических документальных фильмов «Человек с камерой»: шесть женских автобиографических документальных фильмов

6 примеров «автофикшена» в кино

Forbes
Королевские игры Королевские игры

Фрагменты документальной книги Тины Браун «Дом Виндзоров»

RR Люкс.Личности.Бизнес.
Расхламляйся! Расхламляйся!

Как расстаться навсегда с ненужным скарбом?

Лиза
«Я сегодня смеюсь над собой... Мне так хочется счастья и ласки...» «Я сегодня смеюсь над собой... Мне так хочется счастья и ласки...»

Имя Александра Вертинского известно каждому в нашей стране, да и за рубежом

Караван историй
«Комната по соседству» в Венеции: как живой классик Альмодовар осмысляет тему смерти «Комната по соседству» в Венеции: как живой классик Альмодовар осмысляет тему смерти

Почему «Комнату» классика Педро Альмодовара определенно стоит смотреть?

Forbes
Еще раз про синий свет смартфонов. Мешает ли он засыпать Еще раз про синий свет смартфонов. Мешает ли он засыпать

Как синий свет влияет на качество засыпания?

ТехИнсайдер
Александр Домогаров: «Я такого не мог себе позволить никогда! Впервые за 60 лет сделал то, что хотел» Александр Домогаров: «Я такого не мог себе позволить никогда! Впервые за 60 лет сделал то, что хотел»

Об Александре Вертинском рассказывает народный артист Александр Домогаров

Караван историй
«Вы не завершили заказ»: шопоголизм нового времени «Вы не завершили заказ»: шопоголизм нового времени

В чем опасность зависимости от маркетплейсов?

Grazia
Нарядилась Нарядилась

Александра Ребенок — о том, как вырасти в маминых платьях, а потом — из них

Новый очаг
Россияне полюбили избинг. Почему отдых в сельских домиках так нравится молодежи? Россияне полюбили избинг. Почему отдых в сельских домиках так нравится молодежи?

Что такое избинг и почему молодых людей привлекает загородный отдых

Psychologies
Чем опасен секонд-хенд? Чем опасен секонд-хенд?

Любителям секонд-хенда не стоит расслабляться: вот несколько его опасностей

Здоровье
4 примера незаметной лжи, которая разрушает отношения 4 примера незаметной лжи, которая разрушает отношения

Четыре примера незаметной лжи в отношениях

Psychologies
На Alibaba нашлась машинка для производства алмазов за скромные деньги. Но есть подвох На Alibaba нашлась машинка для производства алмазов за скромные деньги. Но есть подвох

Можно ли делать алмазы в гараже?

ТехИнсайдер
Исследование: как могла развиваться Вселенная до Большого взрыва Исследование: как могла развиваться Вселенная до Большого взрыва

Большой отскок: иная теория возникновения и развития Вселенной

ТехИнсайдер
Делиться, не владеть: как меняется рынок шеринга в России и в мире Делиться, не владеть: как меняется рынок шеринга в России и в мире

Почему рынок шеринга переживает бурный рост во всем мире?

ТехИнсайдер
«Билборды» и «Обстоятельства»: из чего состоит наш современный рок? «Билборды» и «Обстоятельства»: из чего состоит наш современный рок?

Молодые музыканты российской рок-сцены узких жанров

Правила жизни
Инвестиция в красоту: как капельницы стали частью современной бьюти-рутины Инвестиция в красоту: как капельницы стали частью современной бьюти-рутины

Почему капельницы стали так популярны в косметологии?

Forbes
Вес попутал Вес попутал

Росина Сефиен – о том, как одеваться, если ты плюс-сайз

VOICE
Если устала от детей Если устала от детей

Что на самом деле тебя истощает и как вернуться в ресурс

Лиза
Губаны-чистильщики оценили размеры своего тела относительно других благодаря зеркалу Губаны-чистильщики оценили размеры своего тела относительно других благодаря зеркалу

Губаны-чистильщики способны формировать ментальный образ собственного тела

N+1
Музыкант Сергей Сироткин: Помню, что «Велит нам петь» придумал после того, как прослушал несколько книг Стивена Кинга Музыкант Сергей Сироткин: Помню, что «Велит нам петь» придумал после того, как прослушал несколько книг Стивена Кинга

Интервью с музыкантом Сергеем Сироткиным

СНОБ
«Безопасность — миф»! Эксперт из США рассказал, нужны ли школьникам смартфоны «Безопасность — миф»! Эксперт из США рассказал, нужны ли школьникам смартфоны

Зачем школьникам смартфоны?

ТехИнсайдер
«Часы мозга» показывают, насколько быстро он стареет «Часы мозга» показывают, насколько быстро он стареет

Стареет ли мозг человека отдельно от его тела?

ТехИнсайдер
На краю земли На краю земли

Столетиями маяки выдерживают натиск стихии, подавая спасительные сигналы

Вокруг света
Весомый вопрос Весомый вопрос

Может ли семаглутид вызвать привыкание или другие негативные последствия?

Psychologies
Открыть в приложении