Как идея о других мирах стала плодотворной для жанра фантастики и для культуры

Наука и жизньНаука

Наука в фантастике: эпизоды истории

Антон Первушин.

Источник: artuk.org

Учёные XIX века всё ещё имели смутное представление о мироздании. Они обсуждали множество гипотез, которые сегодня кажутся нам причудливыми и очень далёкими от действительности. Неопределённость знания и несовершенство методов исследования породили спекулятивные обобщения, которые выглядели очень убедительными. В результате на стыке устаревшей мифологической космологии и гипотетических построений появилась идея о существовании миров вне пределов человеческого восприятия, за гранью чувственного опыта, которая оказалась очень плодотворной для жанра фантастики и культуры в целом.

Странники вне измерений

Жители сказочного мира. Иллюстрация из книги Томаса Кейтли «Мифология фейри» (The Fairy Mythology, Illustrative of the Romance and Superstition of various Countries.London: George Bell & Sons, York Street, Covent Garden. 1878).

Вера в присутствие рядом с нами незримых иных вселенных имеет почтенную историю: любое старинное предание, в котором упоминаются рай, обитель богов или волшебная страна, так или иначе обращается к ней. Ирландский фольклорист Томас Кейтли в фундаментальном труде «Мифология фейри» (Fairy mythology, 1828), посвящённом легендам народов, населяющих Великобританию (фейри — это сказочные персонажи, живущие рядом с людьми), сообщал по этому поводу: «У всех народов сочетание радости и боли, изысканного наслаждения и сильного страдания привело воображение к представлению о местах чистого блаженства, предназначенных для отдыха праведников после тяжких трудов жизни, где царит счастье и обитают существа, превосходящие людей. Воображение индуса рисовало небеса как „преисполненные блаженства”, а все чувственные радости собраны в мусульманском раю. Перс расточал богатства своей фантазии, возводя города из драгоценных камней и янтаря, которые украшают царство джиннов; романисты строили замки и дворцы, населённые рыцарями и дамами, на острове Авалон и в стране фей; эллинские сказители, не привыкшие к пышности и блеску, наполняли Элизий и Остров блаженных теплом и яркими цветами...»

В качестве примера мифотворчества такого рода можно привести кельтские легенды, посвящённые обитателям холмов («сидов») — потомкам прекрасного народа Туата Де Дананн (племена богини Дану, или дети Дану), прибывшего в Ирландию на «магическом облаке». Стремясь захватить больше территорий, они сражались с местными племенами и потерпели поражение от гойделов, сыновей Миля, предков современных людей. Чтобы избежать полного истребления, племена богини Дану применили волшебство, набросив на свою страну покров невидимости. С тех пор существуют две Ирландии: обычная и невидимая, в которую человек не может попасть по своей воле. Мир сидов описывается в сагах как невыразимо прекрасное место, где нет печали и скорби, болезней и старости. Время там течёт намного медленнее, земля плодородна, на ней произрастают невиданные музыкальные цветы и деревья. Сами обитатели сидов отличаются высоким ростом и изяществом. Раз в году, под Хэллоуин (31 октября, праздник Самайн), они меняют место жительства, и в этот период граница между мирами становится зыбкой, возникает зона туманов, через которую волшебные существа проникают к нам, а иногда уводят за собой людей.

Конечно, к началу XIX века, когда Кейтли начал записывать народные сказки для своего исследования, образованные люди понимали, что истории о прекрасных местах вне нашего мира — продукт вымысла невежественных предков. Однако в то же самое время появилось немало научных гипотез о том, что Вселенная устроена гораздо сложнее, чем принято считать.

Многомерный мир

Генри Мор (1614—1687), английский теолог, философ-платоник, поэт. Гравюра работы Уильяма Фейторна. 1675 год. Из коллекции Национальной портретной галереи, Лондон. Источник: npg.org.uk

Аргентинский писатель Хорхе Луис Борхес, увлекавшийся метафизикой, полагал, что корни идеи многомерности пространства следует искать в трудах забытого теолога XVII века — кембриджского платоника Генри Мора, который был убеждён, что бессмертные души и сам Бог имеют «пространственную протяжённость», поэтому могут быть измерены. «Бог является протяжённым, а также и ангелы и всякое самосущее, поскольку протяжение заключено в тех же границах, что и абсолютная сущность вещей... Утверждать, что Бог по-своему протяжён, заставляет меня то, что он вездесущ и тесно заполняет всю мировую машину в её частях». Отличие души от тела, согласно Мору, в том, что душа неделима и способна проницать другое и быть проницаемой, тело же делимо и непроницаемо. Поэтому вопрос о связи души и тела разрешается просто: душа находится в том же месте, что и тело, проницает его, двигает и сообщает жизнь, но при этом пребывает в особом нетелесном пространственном измерении, которое Мор в сочинении «Бессмертие души» (The Immortality of the Soul, 1659) назвал «четвёртой формой» (fourth Mode). В более позднем трактате «Руководство по метафизике» (Enchiridion metaphysicum, 1671) теолог заявил ещё конкретнее: «Материальные вещи, рассматриваемые сами по себе, имеют только три измерения; тем не менее в природе должно наличествовать четвёртое, которое, я думаю, вполне уместно назвать Сущностной Плотностью и которое... относится к духам».

Конечно, воззрения Мора вызвали резкую критику со стороны других мыслителей и в его эпоху не стали основой для более смелых рассуждений. Концепция четвёртого измерения пространства, которое недоступно органам чувств, обрела наполнение только благодаря выдающимся достижениям... математиков.

Николай Иванович Лобачевский (1792—1856), русский математик, один из первооткрывателей неевклидовой геометрии, деятель университетского образования и народного просвещения. Портрет кисти Льва Крюкова. До 1843 года. Из коллекции Национального музея Республики Татарстан, г. Казань. Источник: goskatalog.ru

До XIX века вся геометрия опиралась на принципы и постулаты, изложенные в сочинениях древнегреческого мыслителя Евклида. В 1824 году немецкий математик и астроном Карл Гаусс пришёл к выводу, что возможна и «неевклидова» геометрия, но не решился рассказать о своём умозаключении коллегам. Поэтому авторство её открытия принадлежит нашему соотечественнику — Николаю Ивановичу Лобачевскому, который в 1826 году разработал «воображаемую» геометрию. Пятый постулат Евклида в известной нам со школы формулировке гласит: «В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной». Лобачевский предложил свой вариант: «На плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную». Получалось, что в неевклидовой геометрии через точку может быть проведено бесконечное количество прямых, параллельных любой произвольной, а сумма углов треугольника в таком случае становится меньше 180°.

Несмотря на неприятие теории Лобачевского современниками, оказалось, что её вполне можно воплотить в реальных объектах: в 1868 году итальянский математик Эудженио Бельтрами построил модель «псевдосферы», на которой аксиома российского учёного строго соблюдается.

Неевклидова геометрия: слева представлена псевдосфера Бельтрами, иллюстрирующая геометрию Лобачевского, справа — сфера, иллюстрирующая геометрию Римана. Иллюстрация из книги: Henderson L. The Fourth Dimension and Non-Euclidean Geometry in Modern Art. Massachusetts Institute of Technology, 2013.

Веским доводом стало напоминание Бернхарда Римана, что при переходе от геометрических абстракций к реальным объектам постулаты Евклида нарушаются. Например, на сфере все линии пересекаются в её «полюсах», а сумма углов треугольника становится больше 180°. Взгляд Римана на геометрию предполагал возможность существования поверхностей или пространств, кривизна которых меняется. На такой неправильной поверхности фигуру невозможно перемещать без изменения её собственной формы и свойств. Хотя Евклид формально не постулировал недеформируемость фигур в движении, это предположение существенно для его системы. Если его отменить, получается геометрия, в которой фигуры будут изменяться в зависимости от свойств места, где они находятся.

Такого рода теории заложили основы для так называемой n-мерной геометрии, которая свободно оперировала пространствами, где фигурируют больше трёх привычных нам измерений (длины, ширины и высоты). Правда, вопрос, как визуализировать простые фигуры в «высших» измерениях, возникавший у математиков при обсуждениях, оставался открытым. Например, как будет выглядеть четырёхмерный куб? Известно, что куб можно представить в качестве бесконечного множества квадратов (срезов), расположенных параллельно друг другу. Следовательно, «срезами» четырёхмерного куба будут трёхмерные кубы? Проблему пытался решить американец Ирвинг Стрингхем, который в 1880 году защитил диссертацию «Правильные фигуры в n-мерном пространстве» (Regular Figures in n-dimensional Space). Его представление четырёхмерного куба стало классическим и в дальнейшем неоднократно использовалось сторонниками идеи существования «высших» измерений.

Геометрические фигуры в n-мерном пространстве в представлении Ирвинга Стрингхема; Fig. 4 изображает четырёхмерный куб (гиперкуб, тессеракт). 1880 год. Иллюстрация из книги: Henderson L. The Fourth Dimension and Non-Euclidean Geometry in Modern Art. Massachusetts Institute of Technology, 2013.

Популяризацией новых концепций, порождаемых n-мерной геометрией, с энтузиазмом занимался немецкий физик Герман фон Гельмгольц. В 1870 году он выступил с обширной лекцией «О происхождении и значении геометрических аксиом» (Über den Ursprung und die Bedeutung der geometrischen Axiome). Для иллюстрирования своих соображений по заявленной теме он использовал образ воображаемого мира двумерных разумных существ, живущих на поверхности сферы. Создавая систему геометрических постулатов, они не смогли бы ввести в неё параллельность, поскольку в их вселенной все линии раньше или позже пересекаются. Треугольники тоже имели бы сумму углов больше 180°, как у Римана. «И нет необходимости в дополнительных примерах, — говорил Гельмгольц, — чтобы показать, что геометрические аксиомы должны варьироваться в зависимости от типа пространства, населённого существами, чьи способности рассуждать сходны с нашими». При этом физик полагал, что человек априори не в состоянии вообразить мир «высших» измерений: «...они столь же мало скажут, какая дальнейшая пространственная конструкция будет порождена поверхностью, выходящей из самой себя, насколько мы могли бы представить, что породит твёрдое тело, выходящее из известного нам пространства... Поскольку сегодня не известно ни одного чувственного впечатления, относящегося к такому неслыханному событию, каким было бы для нас перемещение в четвёртое измерение... такое „представление” так же невозможно, как „представление” цветов для слепого с рождения».

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Сезонная эстафета клематисов Сезонная эстафета клематисов

Видовое разнообразие рода клематисов для садового дизайна

Наука и жизнь
Палеогенетики прочитали ДНК представителя первых земледельцев Северного Кавказа Палеогенетики прочитали ДНК представителя первых земледельцев Северного Кавказа

Палеогенетики проанализировали геном представителя дарквети-мешоковской культуры

N+1
Наука о чужих. Жизнь и разум во вселенной Наука о чужих. Жизнь и разум во вселенной

Как ученые и писатели прошлых лет представляли себе обитателей Луны

Наука и жизнь
Зачем люди делают громкий выхлоп на машине Зачем люди делают громкий выхлоп на машине

Люди решили спросить спонсоров бессонницы и владельцев громкого выхлопа напрямую

Maxim
Первый митинг хунвейбинов Первый митинг хунвейбинов

«Убивайте, убивайте их!» — призывали китайские газеты…

Дилетант
Как японский секонд-хенд завоевывает мир и помогает стране пережить инфляцию Как японский секонд-хенд завоевывает мир и помогает стране пережить инфляцию

Что, кому и за сколько продают секонд-хенды и почему в Японии их так много

Forbes
Голливуд на Волге Голливуд на Волге

Как и зачем Голливуд, «Мосфильм» и кинокомпании Европы снимали фильмы вместе

Правила жизни
Валерий Фокин — Forbes: «Театр — это митинг без ОМОНа» Валерий Фокин — Forbes: «Театр — это митинг без ОМОНа»

Валерий Фокин: власть опасается влияния театра на публику в сегодняшней ситуации

Forbes
Настоящая мягкая сила Настоящая мягкая сила

«На светлой стороне»: китайская история взросления в семи новеллах

Weekend
Что такое «изометрические упражнения» и почему они полезны Что такое «изометрические упражнения» и почему они полезны

Что такое изометрические тренировки и как они отличаются от динамических

ТехИнсайдер
Мои отношения с языком Мои отношения с языком

Опыты практического билингвизма

Знание – сила
Как отстирать белые носки без использования отбеливателя: 5 методов, проверенных временем Как отстирать белые носки без использования отбеливателя: 5 методов, проверенных временем

Сделать носки снова белоснежно чистыми не так уж и сложно!

ТехИнсайдер
Протеин на метанотрофах Протеин на метанотрофах

Каковы перспективы появления в России промышленного производства гаприна

Агроинвестор
Единым фронтом Единым фронтом

Сразу после вторжения Франции в Алжир стало понятно, что спокойно тут не будет

Дилетант
Филиппо Минелли: Не позволяю мнению людей влиять на то, что делаю Филиппо Минелли: Не позволяю мнению людей влиять на то, что делаю

Звезда международной арт-сцены Филиппо Минелли — о самых сложных проектах

СНОБ
Инновации решают Инновации решают

Каким окажется будущее российской экономики

Деньги
Самый расцвет: как живые цветы стали одним из главных новых трендов в моде и дизайне Самый расцвет: как живые цветы стали одним из главных новых трендов в моде и дизайне

Почему люди по всему миру готовы оформлять подписку на букеты и носить розы

Forbes
Как понять, что вам нужно мыть голову чаще Как понять, что вам нужно мыть голову чаще

Как понять, что вы моете кожу головы недостаточно часто?

ТехИнсайдер
Продажи важнее креатива и ценности бренда Продажи важнее креатива и ценности бренда

Какие вызовы сегодня стоят перед российскими модными компаниями

Монокль
«Извне»: зачем смотреть мрачный и загадочный сериал от создателей «Остаться в живых» «Извне»: зачем смотреть мрачный и загадочный сериал от создателей «Остаться в живых»

«Извне»: хоррор, который заслуживает вашего внимания

Forbes
Мочевина для дизеля: что это такое и для чего нужна Мочевина для дизеля: что это такое и для чего нужна

Специальная жидкость с малоаппетитным названием раствор мочевины. Для чего она?

РБК
Есть научное объяснение тому, почему у пчел соты не круглые, а в виде шестиугольников Есть научное объяснение тому, почему у пчел соты не круглые, а в виде шестиугольников

Пчелы, не зная математики, строят свои соты в форме шестиугольника. Почему?

ТехИнсайдер
Осенняя уборка! Вещи, от которых нужно избавиться Осенняя уборка! Вещи, от которых нужно избавиться

Какие вещи стоит регулярно выбрасывать из дома?

VOICE
«Буквально держится на краске»: неочевидные факты о том, как сохраняют Эйфелеву башню «Буквально держится на краске»: неочевидные факты о том, как сохраняют Эйфелеву башню

Чем автомобильные выхлопы вредят Эйфелевой башне?

ТехИнсайдер
Простая техника соблюдения диеты, которая продлит жизнь на несколько лет. И это лучше популярного голодания! Простая техника соблюдения диеты, которая продлит жизнь на несколько лет. И это лучше популярного голодания!

Лучший способ продлить свою жизнь — сократить потребление калорий

ТехИнсайдер
Родитель своим родителям: что делать, если в семейной системе нарушены роли Родитель своим родителям: что делать, если в семейной системе нарушены роли

Знакома ли вам ситуация, когда ребенок в семье занимает место взрослого?

Psychologies
3 фактора, снижающих либидо у женщин: что делать 3 фактора, снижающих либидо у женщин: что делать

Что влияет на женское либидо и получение удовольствия от секса?

Psychologies
Вторая сверхзвуковая: когда гражданские самолеты смогут летать быстрее звука Вторая сверхзвуковая: когда гражданские самолеты смогут летать быстрее звука

Сегодня человечество готово вернуться к сверхзвуку на новом уровне технологий

ТехИнсайдер
Кир Булычев. Поперек реки Хронос Кир Булычев. Поперек реки Хронос

Чем Кир Булычев резко выделялся на фоне друзей и соратников по перу?

Знание – сила
Эпоха гиперсвязности: как защитить IT-активы и не стать жертвой кибератак Эпоха гиперсвязности: как защитить IT-активы и не стать жертвой кибератак

Как эффективные технологии стали опасностью для IT-индустрии

Forbes
Открыть в приложении