Действительно ли все эпигенетические феномены являются эпигенетическими

Наука и жизньНаука

Эпигенетика: стресс (не) по наследству

Кирилл Стасевич

Фото: Matthew Daniels/Wellcome Collection/CC BY 4.0

Под конец Второй мировой войны в Нидерландах случился массовый голод. Медицинские истории семей, переживших нидерландскую «голодную зиму» в 1944 году, позволили обнаружить странную вещь: дети тех, кто тогда голодал, страдали от диабета, ожирения и других заболеваний. Более того, дети этих детей — то есть внуки голодавших — рождались весом ниже среднего и также отличались неважным здоровьем. Складывалось впечатление, что последствия голода проявились через поколение. Так могут действовать факторы, меняющие последовательность ДНК, то есть факторы-мутагены, например радиоактивное излучение. Однако сложно представить, что нехватка питательных веществ сработала подобно радиации.

О голоде в Нидерландах всегда вспоминают, когда речь заходит об эпигенетике и эпигенетическом наследовании. Эпигенетика — это то, что происходит поверх генетики, то есть не затрагивая генетический текст, не затрагивая последовательность ДНК. Сейчас опубликовано множество исследований, которые говорят о том, что эпигенетические эффекты есть не только у голода, но и у разных диет, у курения и даже у психологического стресса. От эпигенетики зависят фундаментальные биологические процессы, вроде дифференцировки клеток; эпигенетические перестройки добавляют вероятности хроническим заболеваниям, вплоть до злокачественных опухолей. Вместе с тем, чем больше таких исследований появляется, тем чаще возникают вопросы, действительно ли все те эпигенетические феномены, о которых мы говорим, являются эпигенетическими.

Эпигенетическая регуляция

Любая клетка должна реагировать на изменения окружающей среды. Для этого у неё есть обширный набор рабочих молекул (белков, липидов и пр.), которыми в определённых условиях она вполне может обойтись. Но нередко бывает так, что имеющихся белков мало или среди них нет нужных. Значит, пора активировать ген, который хранит информацию о нужном белке. К гену отправляются белки, которые называются факторами транскрипции, а также ферменты, которые выполняют саму транскрипцию — то есть копируют информацию с ДНК в РНК. Чрезвычайно важную роль играют вспомогательные регуляторные последовательности в самой ДНК — они помогают организовать транскрипционный аппарат в правильном месте. Насинтезированная РНК служит шаблоном для сборки белка — так клетка получает белковые молекулы, которые ей вдруг понадобились. Когда нужда в конкретном белке исчезает, то транскрипция прекращается, и ген замолкает.

Доступность генетической информации в ДНК зависит от двух эпигенетических механизмов: метилирования ДНК и модификаций гистонов. Метильные группы, присоединяемые прямо к азотистым основаниям ДНК, делают ген неактивным, не давая переносить информацию с ДНК в РНК. Модификации гистонов по-разному влияют на открытость ДНК. На рисунке показано, как некая эпигенетическая модификация заставляет гистоны ослабить упаковку ДНК, делая ген доступным для чтения. Рисунок (с изменениями): National Institutes of Health/Wikimedia Commons/PD

Это очень упрощённая картина: на самом деле между геном, записанным в ДНК, и готовым белком есть помимо транскрипции целый ряд сложных молекулярных процессов, от которых тоже очень сильно зависит реакция клетки на события в окружающем мире и внутри самой себя. Но важно то, что клетка легко включает и выключает гены в ответ на появляющиеся и исчезающие стимулы. Стимулом может быть всё что угодно: например, питательные молекулы, которые нужно запасти или переварить, химический сигнал, которым одна иммунная клетка сообщает другой об инфекции, либо электрохимический импульс — в случае нервных, мышечных или некоторых железистых клеток. Но что если стимул возник — и не исчез? Если какой-то фактор среды всё действует и действует? Или, наоборот, стимул исчез и больше не появлялся? Тогда включаются эпигенетические механизмы — они подгоняют работу генов под долговременные условия среды.

Ген можно включить тогда, когда участок ДНК, в котором он записан, открыт для взаимодействия с аппаратом транскрипции. От эпигенетической регуляции зависит не столько сама активность гена, сколько возможность этой активности. Если ген в принципе открыт для работы, то его можно включать и выключать, прислушиваясь к переменчивым сигналам извне. Но ген может быть наглухо закрыт от молекулярных машин, которые считывают генетическую информацию, — тогда его никак не активируешь.

Что значит «открыт» и «закрыт»? Возможность активности — это возможность белков, обслуживающих транскрипцию, взаимодействовать с ДНК. У соответствующих белков определённые аминокислоты и группы аминокислот взаимодействуют с определёнными последовательностями генетических букв, и в результате белок прочно связывается на ДНК. Теперь представим, что на ДНК появились химические модификации. Такие модификации не меняют смысл генетических букв, на которых они сидят, то есть при чтении генетического кода буква сохраняет своё значение. Но вот прочесть её уже не выйдет: модификации не дают читать те участки ДНК, где они появились. Так выглядит один из механизмов эпигенетической регуляции генов — метилирование ДНК. Как можно догадаться, модифицирующими метками тут служат метильные группы CH3–, которые присоединяются и отсоединяются от ДНК специальными ферментами. У млекопитающих метилируется главным образом буква С — азотистое основание цитозин, причём С должна стоять в определённом окружении из других букв. Метилированная ДНК — выключенная ДНК: пока метильные группы не будут сняты, синтез РНК на такой ДНК не пойдёт.

Другой вариант эпигенетической регуляции — это плотная упаковка ДНК. Клеточная ДНК всегда пребывает в комплексе с разными белками, образуя так называемый хроматин. Главные белки хроматина — гистоны: они физически поддерживают нити хромосомной ДНК, не давая им перепутаться и защищая от повреждений. Гистоны отвечают за упаковку ДНК, благодаря им длиннейшие хромосомы помещаются в крохотном ядре (общая длина ДНК всех человеческих хромосом около 2 метров, диаметр клеточного ядра — около 10 микрометров). При этом упаковка может быть более плотной и менее плотной. Когда клетка делится, её хромосомы упакованы полностью и упакованы очень плотно, чтобы их легко было распределить между дочерними клетками. Но и между делениями часть ДНК остаётся в плотной упаковке — и это значит, что с такой ДНК никакую информацию скопировать нельзя. Поведение гистонов опять же зависит от химических модификаций: к аминокислотам в гистоне присоединяются метильные группы, или ацетильные, или остатки фосфорной кислоты, или какие-нибудь ещё. В зависимости от того, какие именно аминокислоты и как именно были модифицированы, гистоны на определённом участке ДНК либо упакуют его плотно, либо освободят его для других белков, которые смогут с ним работать.

Инструментами эпигенетической регуляции могут служить некоторые некодирующие РНК. Эти РНК специфично связываются с матричными РНК (мРНК), которые были скопированы с того или иного гена. Связавшись с мРНК, регуляторная РНК может или ускорить её разрушение, или надолго запретить синтезировать на ней белок. Также разные регуляторные РНК могут взаимодействовать между собой, не давая друг другу работать с мРНК. Кроме того, некоторые регуляторные РНК способны взаимодействовать с белками, задействованными в других механизмах эпигенетической регуляции — например, с теми, которые влияют на модификации гистонов. Регуляторная РНК может помочь белку — эпигенетическому активатору сделать упаковку ДНК более рыхлой и, следовательно, открыть ДНК для транскрипции. Или же регуляторная РНК вместе с белком — эпигенетическим репрессором может настроить гистоны на более плотную упаковку, и ДНК окажется недоступной для чтения. Рисунок (с изменениями) из статьи: Kumar S., Gonzalez E. A., Rameshwar P., Etchegaray J.-P. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers. 2020, 12(12), 3657 (CC BY).

Ещё один механизм эпигенетической регуляции связан с различными РНК. Когда мы говорили, что генетическая информация копируется с ДНК на РНК, а потом на РНК синтезируется белок, то имели в виду матричные, или информационные, РНК. Но кроме них в клетке есть много других видов РНК, которые никакой информации ни о каких белках не несут, а работают сами по себе. Они, например, могут связываться с матричными РНК, из-за чего те начинают быстро разрушаться. Или же регуляторная РНК может соединиться с матричной и тем самым запретить считывание информации с неё — тогда молекулярные машины, которые занимаются синтезом белка, не смогут с ней работать.

Кроме того, регуляторные РНК могут взаимодействовать друг с другом, что опять же будет сказываться на состоянии подведомственных им матричных РНК. Наконец, эпигенетические эффекты от регуляторных РНК могут быть связаны с тем, что они начинают сотрудничать с другими эпигенетическими игроками — например, с белками, участвующими в модифицировании гистонов.

Эти три механизма эпигенетической регуляции — метилирование ДНК, модификации гистонов, регуляторные РНК — изучены в разной степени у разных организмов. Но в целом метилирование изучено лучше, поэтому, когда говорят об эпигенетических метках, эпигенетическом коде или эпигенетическом рисунке, часто имеют в виду только метилирование ДНК.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Соевый соус: со вкусом умами и кокуми Соевый соус: со вкусом умами и кокуми

История соевого соуса и его множественных вариаций

Наука и жизнь
Как заниматься анальным сексом, как подготовиться и что делать, если вам не понравилось Как заниматься анальным сексом, как подготовиться и что делать, если вам не понравилось

В чем секрет удачного анального секса? Как получить от него удовольствие?

Psychologies
Сердечные орешки! Сердечные орешки!

Как растут орешки кешью?

Наука и жизнь
Почему на ногах остаются следы от резинки носков? Это не обязательно отек Почему на ногах остаются следы от резинки носков? Это не обязательно отек

Следы от резинок носков могут быть временным и совершенно нормальным явлением

ТехИнсайдер
Прекрасный армянин Прекрасный армянин

Микаэл Лорис-Меликов подарил России пятнадцать месяцев либеральных мечтаний

Дилетант
За кино, против критики За кино, против критики

Если кто и спорит о вкусах, так это кинокритики

СНОБ
Каждая личинка — индивидуальность Каждая личинка — индивидуальность

Эти небольшие червячки красного цвета — объект пристального внимания биологов

Наука и жизнь
Пьет значит жив Пьет значит жив

Как запой оказался единственной живой темой «Живого трупа»

Weekend
Агрономы с пропеллером Агрономы с пропеллером

На полях и над полями уже вовсю работают дроны. Агродроны

ТехИнсайдер
Маленькая мисс Одиннадцать: как Милли Бобби Браун добивается успеха в кино и бизнесе Маленькая мисс Одиннадцать: как Милли Бобби Браун добивается успеха в кино и бизнесе

Как Милли Бобби Браун удалось не стать заложницей одной роли?

Forbes
Что будет, если заменить батареи теплым полом: ваше сердце не скажет спасибо, считает ученый из МЭИ Что будет, если заменить батареи теплым полом: ваше сердце не скажет спасибо, считает ученый из МЭИ

Можно ли отопить дом только теплым полом?

ТехИнсайдер
Со всей душой Со всей душой

Как отдохнуть в Армении в бархатный сезон

Лиза
И дело с кольцом И дело с кольцом

Несколько причин, почему мужчина расстался с тобой и женился на другой

VOICE
50 фактов об аистах: зачем они испражняются на свои ноги и почему эти птицы — суровые родители? 50 фактов об аистах: зачем они испражняются на свои ноги и почему эти птицы — суровые родители?

Борьба самок за самцов, сон стоя, доверчивость и другие факты об аистах

ТехИнсайдер
Быть женщиной Быть женщиной

Основательница бренда OLOLOL — как опыт в бизнесе помогает строить модный бренд

Grazia
Сделать первый шаг к свободе Сделать первый шаг к свободе

Истории участников анонимных сообществ, помогающих избавиться от зависимостей

Psychologies
Оптическая или цифровая: какая стабилизация лучше, и зачем она вообще нужна Оптическая или цифровая: какая стабилизация лучше, и зачем она вообще нужна

Зачем вообще нужна стабилизация изображения в смартфонах и камерах?

CHIP
Филипп Чижевский: Человек без специального образования зачастую воспринимает музыку острее, чем искушенный слушатель Филипп Чижевский: Человек без специального образования зачастую воспринимает музыку острее, чем искушенный слушатель

Дирижер Филипп Чижевский — о музыке, путешествиях и эмоциях

СНОБ
Зеленое будущее: как восемь стартапов профессора MIT создают более экологичный мир Зеленое будущее: как восемь стартапов профессора MIT создают более экологичный мир

Исследования Йет Мин Чана в области материаловедения граничат с фантастикой

Forbes
Высокий или так себе? Какой у тебя IQ и на что он влияет Высокий или так себе? Какой у тебя IQ и на что он влияет

С помощью каких тестов измеряется коэффициент интеллекта? Можно ли его повысить?

Лиза
Яхта особого назначения Яхта особого назначения

Давайте посмотрим, что такого особенного в суперъяхте Eternal Spark

Y Magazine
3 упражнения Лоуэна: как работает телесная психотерапия 3 упражнения Лоуэна: как работает телесная психотерапия

Можно ли улучшить ментальное состояние с помощью работы над телом?

Psychologies
Неподкупное содержание Неподкупное содержание

Искусствовед Сергей Попов — о диктате денег в современном арт-мире

СНОБ
Культ удовольствия Культ удовольствия

Гедонизм — это хорошо или плохо?

Добрые советы
Огненный гость из загадочной Вселенной: почему нельзя делать снимки шаровой молнии и другие факты о таинственном явлении Огненный гость из загадочной Вселенной: почему нельзя делать снимки шаровой молнии и другие факты о таинственном явлении

Шаровая молния: загадочное явление, которое притягивает и пугает одновременно

ТехИнсайдер
Разве этого мы ждали: топ-5 самых ужасных игр за последние годы Разве этого мы ждали: топ-5 самых ужасных игр за последние годы

Собираем все разбитые надежды геймеров.

Maxim
Астрономы разрешили Земле пережить превращение Солнца в красного гиганта Астрономы разрешили Земле пережить превращение Солнца в красного гиганта

Земля может пережить расширение Солнца во время фазы красного гиганта

N+1
Считавшийся рыбоядным или насекомоядным раннемеловой энанциорнис оказался любителем фруктов Считавшийся рыбоядным или насекомоядным раннемеловой энанциорнис оказался любителем фруктов

Оказалось, что раннемеловой энанциорнис питался плодами растений

N+1
Истина где-то рядом: как создавались культовые «Секретные материалы» Истина где-то рядом: как создавались культовые «Секретные материалы»

«Секретные материалы»: какое влияние оказал культовый сериал на индустрию?

Правила жизни
Как можно использовать мяту в быту: 8 потрясающих идей Как можно использовать мяту в быту: 8 потрясающих идей

Вариантов, как можно применить мяту в быту, на самом деле целое множество!

ТехИнсайдер
Открыть в приложении