В 2022 году нас ждет бум в дизайне новых материалов

ЭкспертHi-Tech

Новые материалы на потоке

В 2022 году нас ждет бум в компьютерном дизайне новых материалов, создание новых материалов для энергетики, новые технологии применения нанокомпозитов и, возможно, высокотемпературная сверхпроводимость

Антон Резниченко, Виталий Лейбин

Профессор «Сколково» Артем Оганов

«Сделать то, что они сделали, — это точно подвиг», — заявил Анатоль фон Лилиенфельд, ученый-материаловед из Венского университета по поводу вышедшей 9 декабря статьи в Science (Kirkpatrick, J. et al. Science 374, 1385–1389, 2021) о создании компанией DeepMind нейросетевой модели, которая умеет рассчитывать состояние химических молекул, то есть способна предсказывать новые химические реакции и вещества.

Свойства молекул теоретически считаются известными законами квантовой механики, достаточно применить их для определения свойств некоторых электронов. Практическая проблема состоит, однако, в том, что квантомеханическое уравнение Шрёдингера даже для простых химических систем слишком сложно для расчетов. С 1970-х годов используются упрощенные методы расчета функционала плотности электронных облаков, но и такие приближения требуют огромных вычислительных затрат. Сейчас эта задача для практического применения может быть с хорошей точностью, как сообщают авторы статьи, решена с помощью искусственного интеллекта — он обучился на готовых расчетах известных соединений. Предыдущим прорывом DeepMind была модель AlphaFold, созданная в 2020 году, которая научилась предсказывать структуры белковых молекул — основного материала всего живого. Теперь искусственный интеллект замахнулся на химию как таковую. Удивительно, что компания, прославившаяся в свое время созданием модели, которая сумела выиграть у человека в игру го, а потом была выкуплена Google, раз за разом щелкает самые сложные фундаментальные научные задачи. Если для обучения модели потребовались колоссальные вычислительные мощности, то теперь для решения практических задач достаточно обычных компьютеров — модель открыта для использования научными группами по всему миру.

Продолжают показывать удивительные результаты и другие методы расчета состояний химических веществ. В тот же день, 9 декабря, в Nature (npj Computational Materials volume 7, Article number: 199, 2021) вышла очередная важная работа российского химика-кристаллографа, профессора «Сколково» Артема Оганова (с группой его китайских коллег) об очередном успехе его метода расчета химических структур USPEX, вернее его усовершенствованного варианта для расчета сложных структур, на примере трех химических систем, важных для материаловедения и геохимии. USPEX — это не нейросеть, а алгоритм, который считает минимум энергии химических соединений (то есть наиболее устойчивые из них в данных условиях), используя остроумный «эволюционный метод». Поскольку расчет всех локальных минимумов требовал бы неподъемных вычислительных и временных затрат, метод не считает их все. Он посылает «искателей» минимумов в пространство энергии, причем самые успешные порождают новых искателей, а неуспешные исчезают (работает тот же принцип, что в дарвиновской эволюции). Такой алгоритм относительно быстро находит абсолютный минимум энергии на местности с множеством «холмов и оврагов», то есть стабильную структуру вещества. С помощью этого метода уже открыты (потом подтвержденные в эксперименте) неизвестные ранее соединения, разрабатываются новые сверхпроводники и наноматериалы. Метод тоже открыт для исследователей и используется тысячами групп по всему миру.

Но какие именно материалы будут найдены новыми методами?

Материалы «зеленеют»

Председатель совета директоров НПО «Унихимтек» Виктор Авдеев

Внимание, уделяемое энергетическому переходу, и те средства, которые выделяются в мире на эти цели, позволяют предполагать, что в ближайшее время будут найдены новые материалы для «зеленой» энергетики. То, что в этой сфере наибольшие ожидания, не вызывает сомнений ни у Артема Оганова, ни у Виктора Авдеева, завкафедрой химической технологии и новых материалов химического факультета МГУ, главы компании «Унихимтек» (создатель композитного крыла для самолета МС-21).

Одна из задач, которую штурмуют множество лабораторий по всему миру, — поиск новых материалов для производства солнечных панелей. Сегодня в фотоэлементах для солнечной энергетики используется в основном кристаллический кремний, однако эффективность таких элементов недостаточна для долгосрочной устойчивости «зеленой» экономики и, похоже, упирается в потолок; сейчас КПД кремниевых панелей наращивается за счет толщины слоя.

«Известны материалы, которые поглощают солнечный свет и позволяют преобразовывать его в электричество настолько хорошо, что можно обойтись очень тонким слоем, фактически как краска, — говорит Артем Оганов. — Можно наносить эту “краску” на стены дома и получать электричество из нее». Такие материалы давно исследуют, но до широкого применения на практике дело не дошло, потому что очень трудно разработать технологию настолько совершенную, как технология производства кремния.

Уже десять лет продолжается бум исследований в отношении гибридных перовскитов — полупроводников, состоящих из органической и неорганической частей (часто — ионов свинца). Только что вышел специальный номер российского журнала Mendeleev Communications с материалами конференции по этой теме, из которых следует, что и в России темой занимаются несколько сильных групп, работающих с разными формулами.

Однако у кремния есть преимущество, которое гарантирует его дальнейшее применение: зрелость технологии. Кроме того, известные сегодня гибридные перовскиты довольно неустойчивы. Поэтому срок их работы невелик: спустя относительно короткое время их свойства деградируют. Кроме того, все они содержат свинец, неудобный в работе и не везде доступный.

Перовскит

«Думаю, продолжатся попытки каким-то образом стабилизировать эти материалы или изобрести другие, более устойчивые, но не менее эффективные», — считает Артем Оганов.

Один из грантов Российского научного фонда этого года, полученный группой в Объединенном институте ядерных исследований в Дубне, посвящен нейтронным методам изучения структурной стабильности гибридных перовскитов

Первое место в ожиданиях будущего года Виктор Авдеев отдает материалам для более эффективных электрических батарей.

«Это материалы для химических источников тока, для мобильной энергетики. — говорит он. — Это анодные материалы, углеродно-анодные, над которыми мы работаем в МГУ, катодные материалы на оксидных основах — то, над чем работают в “Сколтехе”. Мобильный транспорт, электротранспорт — сейчас будет колоссальное движение в этом направлении в мире».

Ученые «Сколтеха» (и их коллеги из Франции, США, Швейцарии и Австралии) в этом году опубликовали в Nature Materials статью о новом материале для катода эффективного натрий-ионного аккумулятора. Сегодня главная мировая технология — это литий-ионные аккумуляторы, однако запасы лития ограничены, он относительного дорог, а его добыча несет экологические риски. Поэтому множество групп, в том числе в России, ищут альтернативные пути мобильной энергетики. Больше всего шансов у технологии натрий-ионных аккумуляторов, но пока не удалось создать натрий-ионный аккумулятор с достаточно высокой плотностью энергии и стабильностью работы.

В процессе поиска катодных и анодных решений для аккумуляторов и вообще в области электрохимии открывают новые материалы с неожиданными свойствами.

На прошедшем в декабре Конгрессе молодых ученых ведущий научный сотрудник химического факультета МГУ Кирилл Напольский рассказал о создании перспективного покрытия для зданий на основе анодного оксида алюминия.

Анодный оксид алюминия

«Надеюсь, что в ближайшем будущем [в России] будет построено здание, фасад которого будет облицован панелями с покрытием по нашей технологии. В этом случае цвет здания будет изменяться по ходу движения солнца с востока на запад в течение светового дня», — сказал он. Вообще, анодный оксид алюминия — это тонкопленочный пористый материал, на матрице которого можно создавать самые разные наноматериалы.

«А если говорить о том, что почти все это объединяет, то, конечно, это углеродное волокно, — считает Виктор Авдеев. — Это ответ на огромное количество вопросов, связанных с электротранспортом и с трубами для транспортировки водорода, это и самолеты, и космос. Углепластики используются во всем, что летает: это самолет МС-21, беспилотная авиация, широкофюзеляжный российско-китайский самолет. Сегодня уже самолеты по весу состоят на 40–50 процентов из углепластика. А если учесть, что плотность углепластика 1,5–1,7, а у стали 8 по весу, то по объему это уже не 50, а 70 процентов всего того, что занимает объем самолета».

Двумерные материалы

С композитами на основе углеродных наноматериалов пересекается сфера двумерных материалов, таких как графен.

«Сейчас непрерывно открываются целые новые семейства двумерных материалов. И этот тренд продолжится, как и попытки применить эти материалы в технологиях различного рода», — считает Артем Оганов.

Это материалы, которые состоят из слоя толщиной в один атом. Самые известные — графен и дисульфид молибдена. Они обладают уникальными свойствами: имеют слоистую структуру, которая позволяет легко отшелушить мономолекулярные слои и создавать разные молекулярные конструкции. Однако покрытия с добавлением почти в любой материал графена стираются слишком быстро, что пока мешает использовать их эффективно.

Структура графена

«Сейчас много исследований по поводу вандерваальсовых гетероструктур на основе графена, которые можно представить как наложение элементарных слоев разных двумерных материалов. Такая структура является интересным полем, пространством для игры экспериментатора и теоретика», — говорит Артем Оганов.

Возможность наложения слоев позволяет создать материал с новыми свойствами. При этом важно, что сам процесс создания таких «сэндвичей» максимально прост. С помощью скотча можно получить отдельные кристаллы, а соединить их — при помощи полимерных пленок.

Еще один перспективный класс двумерных соединений, который ждет технологического применения, — это максены, открытые в 2011 году американским химиком советского (украинского) происхождения Юрием Гогоци. Это семейство двумерных карбидов и нитридов переходных металлов, таких как, например, титан. Они гибкие и обладают высокой проводимостью при минимальной толщине. Кроме того, максены достаточно прочны, чтобы выполнять функции твердых смазочных материалов в космических устройствах либо в высокотемпературных промышленных процессах: они снижают трение в шесть раз в сравнении с необработанными поверхностями.

Слои максена

Максены уже обошли даже перспективный графен по многим свойствам. В частности, проводимость у многослойных пленок из максенов гораздо выше, чем у восстановленного оксида графена. Сегодня покрытия из максенов по сравнению с другими двумерными материалами обеспечивает вдвое больший срок эксплуатации.

Комнатная сверхпроводимость

Еще одно перспективное направление материаловедения также связано с энергетикой. Речь идет о комнатной сверхпроводимости. За последние два года ученые подошли к ней вплотную.

«Уже общепризнанным является достижение критической температуры сверхпроводимости 260 градусов Кельвина, то есть при вполне человеческих минус 13 градусов Цельсия, правда, при высоком давлении. Но до достижения комнатной температуры осталось совсем немного», — утверждает Артем Оганов.

Сверхпроводимость — состояние материала, в котором электрическое сопротивление равно нулю, — давняя перспективная отрасль, уже сейчас в Китае есть поезда на магнитной подушке (магниты в этой технологии — сверхпроводниковые), сверхпроводниковые элементы предполагается использовать в будущем термоядерном реакторе ИТЭР, в Москве уже есть первая подстанция на сверхпроводниках — «Мневники». Однако десятилетиями ожидалось открытие сверхпроводниковых материалов, которые радикально расширят сферу их применения, и, возможно, прорыв близок.

Проблема в том, что для обычных материалов сверхпроводимость достигается при очень низких температурах (для того же алюминия это минус 272 градуса Цельсия) или с помощью высокого давления.

«Само по себе высокое давление ограничивает практическую ценность этих работ, — объясняет Артем Оганов. — Поэтому продолжатся поиски высокотемпературных сверхпроводников, по возможности комнатных, которые могли бы существовать без давления и применяться на практике. Была работа американских исследователей в 2020 году, в которой они утверждали, что достигли комнатной сверхпроводимости. Поначалу она вызвала много энтузиазма, но сейчас понятно, что работа неправильная, результат был некорректен».

Совместно с коллегами из Цзилиньского университета Артем Оганов и аспирант Дмитрий Семенок экспериментально продемонстрировали сверхпроводимость у двух супергидридов церия — CeH9, открытого в 2019 году, и у впервые синтезированного CeH10. Результаты исследования были опубликованы в сентябре 2021 года (Phys. Rev. Lett. 127, 117001 — 2021). Как сказано в статье, эти соединения являются идеальными объектами для будущих исследований механизма сверхпроводимости гидридов и создания других сверхпроводников, которые имеют стабильность при более низком давлении.

Наиболее высокотемпературные сверхпроводники были открыты как раз методом компьютерного дизайна, ускоренное развитие которого является базовым трендом года.

Николай Галкин/ТАСС; Александр Рюмин/ТАСС

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Одним махом Одним махом

Как гиперзвуковые технологии меняют мир и почему Россия «впереди планеты всей»

Популярная механика
Как найти свое счастье: бесценные научные советы Как найти свое счастье: бесценные научные советы

Формула счастья будет уникальной для каждого человека. Но как найти свою?

Psychologies
Украина Зеленского: страна бесконечного полураспада Украина Зеленского: страна бесконечного полураспада

Президент Украины Владимир Зеленский поднял ставки в борьбе за власть

Эксперт
Дымзавесы и перцовый газ: как оборонка СССР создавала противоугонные системы Дымзавесы и перцовый газ: как оборонка СССР создавала противоугонные системы

Охранная система, которая работала по принципу газового оружия, существовала

ТехИнсайдер
Стройка в стиле Lego Стройка в стиле Lego

В России резко возрос интерес к модульному домостроению

Эксперт
Молодость навсегда Молодость навсегда

Важные бьюти-ингредиенты, которые помогают нам дольше оставаться молодыми

Лиза
Михаил Гордин: «Научно-техническую мысль невозможно остановить» Михаил Гордин: «Научно-техническую мысль невозможно остановить»

Россия подтвердила свое умение создавать современные авиадвигатели

Эксперт
Анатолий Корнеев: как изменить отношение россиян к алкоголю Анатолий Корнеев: как изменить отношение россиян к алкоголю

Анатолий Корнеев: почему в России плохо развита культура потребления алкоголя

СНОБ
Очень тяжелые носители Очень тяжелые носители

Прототипы будущей сверхтяжелой ракеты Starship продолжают испытания

Популярная механика
Ле Корбюзье, история безумия и секты: 10 значимых книг, которые вышли в феврале Ле Корбюзье, история безумия и секты: 10 значимых книг, которые вышли в феврале

В феврале книжный мир еще только просыпается и готовится к выходу бестселлеров

Правила жизни
Кабинет для фрилансера Кабинет для фрилансера

Юрист из Харькова зарабатывает на автоматизации работы с внештатниками

Forbes
5 вопросов, которые помогут достичь эмоциональной близости в отношениях 5 вопросов, которые помогут достичь эмоциональной близости в отношениях

Вопросы для определения уровня взаимопонимания и эмоциональной связи с партнером

Inc.
Улыбнитесь, вас снимают Улыбнитесь, вас снимают

Развитие систем биометрической идентификации в России требует доработки

Эксперт
«Казус белых» на российском рынке вина «Казус белых» на российском рынке вина

На российском винном рынке красные вина постепенно уступают место белым

РБК
«Не хочу» остро мыслящего человека «Не хочу» остро мыслящего человека

«Minima moralia»: как человек с обрушившейся жизнью постепенно приходит в себя

Знание – сила
Африканские пленные Первой мировой Африканские пленные Первой мировой

Среди военнопленных Первой мировой войны одна категория людей оказалась забыта

Знание – сила
Бизнес с историей Бизнес с историей

Чем выгодны покупки инвесторами помещений в объектах культурного наследия

Ведомости
Физкультуру в массы Физкультуру в массы

Как функционируют любительские спортивные лиги

Ведомости
Выбирай головой Выбирай головой

Как понять, к кому обратиться — психологу, психотерапевту и психиатру?

VOICE
Элементарно, Ватсон Элементарно, Ватсон

Портрет необъятной Викторианской эпохи в пяти предметах

Вокруг света
Атлантида Донта Атлантида Донта

Эрик Донт — создатель садов с узнаваемым стилем. Его работы будто бесконтрольны

Afternoon Seasons of life
Хорошо там, где нас нет? Хорошо там, где нас нет?

На смену синдрому FOMO пришел FOBI. Почему теперь мы вовсе не хотим вовлекаться?

Grazia
Свидание с Россией Свидание с Россией

Богатые и успешные россияне о лучших городах Сибири и Дальнего Востока

RR Люкс.Личности.Бизнес.
Мёд Мёд

Мёд — уникальный продукт, созданный природой готовым к употреблению

Здоровье
Владимир Михайлов Владимир Михайлов

Камнерез из Боровичей возродил утраченную технику пластики древнего Новгорода

Собака.ru
Ты моя хорошая Ты моя хорошая

Какие качества необходимы сегодня настоящей подруге?

VOICE
JONY JONY

Саундтрек жизни JONY, который поможет лучше его понять

Men Today
«Несвяточные рассказы» и смешной роман о непростом выборе «Несвяточные рассказы» и смешной роман о непростом выборе

Книги о волшебстве, мошенничестве, зороастрийской магии и Италии

Ведомости
Битва за коэффициент рождаемости Битва за коэффициент рождаемости

Почему население планеты сокращается и чего нам ждать в будущем?

Монокль
Психолог — о том, как найти решения в трудных жизненных ситуациях Психолог — о том, как найти решения в трудных жизненных ситуациях

Психолог о том, почему стремление к комфортным отношениям

РБК
Открыть в приложении