В 2022 году нас ждет бум в дизайне новых материалов

ЭкспертHi-Tech

Новые материалы на потоке

В 2022 году нас ждет бум в компьютерном дизайне новых материалов, создание новых материалов для энергетики, новые технологии применения нанокомпозитов и, возможно, высокотемпературная сверхпроводимость

Антон Резниченко, Виталий Лейбин

Профессор «Сколково» Артем Оганов

«Сделать то, что они сделали, — это точно подвиг», — заявил Анатоль фон Лилиенфельд, ученый-материаловед из Венского университета по поводу вышедшей 9 декабря статьи в Science (Kirkpatrick, J. et al. Science 374, 1385–1389, 2021) о создании компанией DeepMind нейросетевой модели, которая умеет рассчитывать состояние химических молекул, то есть способна предсказывать новые химические реакции и вещества.

Свойства молекул теоретически считаются известными законами квантовой механики, достаточно применить их для определения свойств некоторых электронов. Практическая проблема состоит, однако, в том, что квантомеханическое уравнение Шрёдингера даже для простых химических систем слишком сложно для расчетов. С 1970-х годов используются упрощенные методы расчета функционала плотности электронных облаков, но и такие приближения требуют огромных вычислительных затрат. Сейчас эта задача для практического применения может быть с хорошей точностью, как сообщают авторы статьи, решена с помощью искусственного интеллекта — он обучился на готовых расчетах известных соединений. Предыдущим прорывом DeepMind была модель AlphaFold, созданная в 2020 году, которая научилась предсказывать структуры белковых молекул — основного материала всего живого. Теперь искусственный интеллект замахнулся на химию как таковую. Удивительно, что компания, прославившаяся в свое время созданием модели, которая сумела выиграть у человека в игру го, а потом была выкуплена Google, раз за разом щелкает самые сложные фундаментальные научные задачи. Если для обучения модели потребовались колоссальные вычислительные мощности, то теперь для решения практических задач достаточно обычных компьютеров — модель открыта для использования научными группами по всему миру.

Продолжают показывать удивительные результаты и другие методы расчета состояний химических веществ. В тот же день, 9 декабря, в Nature (npj Computational Materials volume 7, Article number: 199, 2021) вышла очередная важная работа российского химика-кристаллографа, профессора «Сколково» Артема Оганова (с группой его китайских коллег) об очередном успехе его метода расчета химических структур USPEX, вернее его усовершенствованного варианта для расчета сложных структур, на примере трех химических систем, важных для материаловедения и геохимии. USPEX — это не нейросеть, а алгоритм, который считает минимум энергии химических соединений (то есть наиболее устойчивые из них в данных условиях), используя остроумный «эволюционный метод». Поскольку расчет всех локальных минимумов требовал бы неподъемных вычислительных и временных затрат, метод не считает их все. Он посылает «искателей» минимумов в пространство энергии, причем самые успешные порождают новых искателей, а неуспешные исчезают (работает тот же принцип, что в дарвиновской эволюции). Такой алгоритм относительно быстро находит абсолютный минимум энергии на местности с множеством «холмов и оврагов», то есть стабильную структуру вещества. С помощью этого метода уже открыты (потом подтвержденные в эксперименте) неизвестные ранее соединения, разрабатываются новые сверхпроводники и наноматериалы. Метод тоже открыт для исследователей и используется тысячами групп по всему миру.

Но какие именно материалы будут найдены новыми методами?

Материалы «зеленеют»

Председатель совета директоров НПО «Унихимтек» Виктор Авдеев

Внимание, уделяемое энергетическому переходу, и те средства, которые выделяются в мире на эти цели, позволяют предполагать, что в ближайшее время будут найдены новые материалы для «зеленой» энергетики. То, что в этой сфере наибольшие ожидания, не вызывает сомнений ни у Артема Оганова, ни у Виктора Авдеева, завкафедрой химической технологии и новых материалов химического факультета МГУ, главы компании «Унихимтек» (создатель композитного крыла для самолета МС-21).

Одна из задач, которую штурмуют множество лабораторий по всему миру, — поиск новых материалов для производства солнечных панелей. Сегодня в фотоэлементах для солнечной энергетики используется в основном кристаллический кремний, однако эффективность таких элементов недостаточна для долгосрочной устойчивости «зеленой» экономики и, похоже, упирается в потолок; сейчас КПД кремниевых панелей наращивается за счет толщины слоя.

«Известны материалы, которые поглощают солнечный свет и позволяют преобразовывать его в электричество настолько хорошо, что можно обойтись очень тонким слоем, фактически как краска, — говорит Артем Оганов. — Можно наносить эту “краску” на стены дома и получать электричество из нее». Такие материалы давно исследуют, но до широкого применения на практике дело не дошло, потому что очень трудно разработать технологию настолько совершенную, как технология производства кремния.

Уже десять лет продолжается бум исследований в отношении гибридных перовскитов — полупроводников, состоящих из органической и неорганической частей (часто — ионов свинца). Только что вышел специальный номер российского журнала Mendeleev Communications с материалами конференции по этой теме, из которых следует, что и в России темой занимаются несколько сильных групп, работающих с разными формулами.

Однако у кремния есть преимущество, которое гарантирует его дальнейшее применение: зрелость технологии. Кроме того, известные сегодня гибридные перовскиты довольно неустойчивы. Поэтому срок их работы невелик: спустя относительно короткое время их свойства деградируют. Кроме того, все они содержат свинец, неудобный в работе и не везде доступный.

Перовскит

«Думаю, продолжатся попытки каким-то образом стабилизировать эти материалы или изобрести другие, более устойчивые, но не менее эффективные», — считает Артем Оганов.

Один из грантов Российского научного фонда этого года, полученный группой в Объединенном институте ядерных исследований в Дубне, посвящен нейтронным методам изучения структурной стабильности гибридных перовскитов

Первое место в ожиданиях будущего года Виктор Авдеев отдает материалам для более эффективных электрических батарей.

«Это материалы для химических источников тока, для мобильной энергетики. — говорит он. — Это анодные материалы, углеродно-анодные, над которыми мы работаем в МГУ, катодные материалы на оксидных основах — то, над чем работают в “Сколтехе”. Мобильный транспорт, электротранспорт — сейчас будет колоссальное движение в этом направлении в мире».

Ученые «Сколтеха» (и их коллеги из Франции, США, Швейцарии и Австралии) в этом году опубликовали в Nature Materials статью о новом материале для катода эффективного натрий-ионного аккумулятора. Сегодня главная мировая технология — это литий-ионные аккумуляторы, однако запасы лития ограничены, он относительного дорог, а его добыча несет экологические риски. Поэтому множество групп, в том числе в России, ищут альтернативные пути мобильной энергетики. Больше всего шансов у технологии натрий-ионных аккумуляторов, но пока не удалось создать натрий-ионный аккумулятор с достаточно высокой плотностью энергии и стабильностью работы.

В процессе поиска катодных и анодных решений для аккумуляторов и вообще в области электрохимии открывают новые материалы с неожиданными свойствами.

На прошедшем в декабре Конгрессе молодых ученых ведущий научный сотрудник химического факультета МГУ Кирилл Напольский рассказал о создании перспективного покрытия для зданий на основе анодного оксида алюминия.

Анодный оксид алюминия

«Надеюсь, что в ближайшем будущем [в России] будет построено здание, фасад которого будет облицован панелями с покрытием по нашей технологии. В этом случае цвет здания будет изменяться по ходу движения солнца с востока на запад в течение светового дня», — сказал он. Вообще, анодный оксид алюминия — это тонкопленочный пористый материал, на матрице которого можно создавать самые разные наноматериалы.

«А если говорить о том, что почти все это объединяет, то, конечно, это углеродное волокно, — считает Виктор Авдеев. — Это ответ на огромное количество вопросов, связанных с электротранспортом и с трубами для транспортировки водорода, это и самолеты, и космос. Углепластики используются во всем, что летает: это самолет МС-21, беспилотная авиация, широкофюзеляжный российско-китайский самолет. Сегодня уже самолеты по весу состоят на 40–50 процентов из углепластика. А если учесть, что плотность углепластика 1,5–1,7, а у стали 8 по весу, то по объему это уже не 50, а 70 процентов всего того, что занимает объем самолета».

Двумерные материалы

С композитами на основе углеродных наноматериалов пересекается сфера двумерных материалов, таких как графен.

«Сейчас непрерывно открываются целые новые семейства двумерных материалов. И этот тренд продолжится, как и попытки применить эти материалы в технологиях различного рода», — считает Артем Оганов.

Это материалы, которые состоят из слоя толщиной в один атом. Самые известные — графен и дисульфид молибдена. Они обладают уникальными свойствами: имеют слоистую структуру, которая позволяет легко отшелушить мономолекулярные слои и создавать разные молекулярные конструкции. Однако покрытия с добавлением почти в любой материал графена стираются слишком быстро, что пока мешает использовать их эффективно.

Структура графена

«Сейчас много исследований по поводу вандерваальсовых гетероструктур на основе графена, которые можно представить как наложение элементарных слоев разных двумерных материалов. Такая структура является интересным полем, пространством для игры экспериментатора и теоретика», — говорит Артем Оганов.

Возможность наложения слоев позволяет создать материал с новыми свойствами. При этом важно, что сам процесс создания таких «сэндвичей» максимально прост. С помощью скотча можно получить отдельные кристаллы, а соединить их — при помощи полимерных пленок.

Еще один перспективный класс двумерных соединений, который ждет технологического применения, — это максены, открытые в 2011 году американским химиком советского (украинского) происхождения Юрием Гогоци. Это семейство двумерных карбидов и нитридов переходных металлов, таких как, например, титан. Они гибкие и обладают высокой проводимостью при минимальной толщине. Кроме того, максены достаточно прочны, чтобы выполнять функции твердых смазочных материалов в космических устройствах либо в высокотемпературных промышленных процессах: они снижают трение в шесть раз в сравнении с необработанными поверхностями.

Слои максена

Максены уже обошли даже перспективный графен по многим свойствам. В частности, проводимость у многослойных пленок из максенов гораздо выше, чем у восстановленного оксида графена. Сегодня покрытия из максенов по сравнению с другими двумерными материалами обеспечивает вдвое больший срок эксплуатации.

Комнатная сверхпроводимость

Еще одно перспективное направление материаловедения также связано с энергетикой. Речь идет о комнатной сверхпроводимости. За последние два года ученые подошли к ней вплотную.

«Уже общепризнанным является достижение критической температуры сверхпроводимости 260 градусов Кельвина, то есть при вполне человеческих минус 13 градусов Цельсия, правда, при высоком давлении. Но до достижения комнатной температуры осталось совсем немного», — утверждает Артем Оганов.

Сверхпроводимость — состояние материала, в котором электрическое сопротивление равно нулю, — давняя перспективная отрасль, уже сейчас в Китае есть поезда на магнитной подушке (магниты в этой технологии — сверхпроводниковые), сверхпроводниковые элементы предполагается использовать в будущем термоядерном реакторе ИТЭР, в Москве уже есть первая подстанция на сверхпроводниках — «Мневники». Однако десятилетиями ожидалось открытие сверхпроводниковых материалов, которые радикально расширят сферу их применения, и, возможно, прорыв близок.

Проблема в том, что для обычных материалов сверхпроводимость достигается при очень низких температурах (для того же алюминия это минус 272 градуса Цельсия) или с помощью высокого давления.

«Само по себе высокое давление ограничивает практическую ценность этих работ, — объясняет Артем Оганов. — Поэтому продолжатся поиски высокотемпературных сверхпроводников, по возможности комнатных, которые могли бы существовать без давления и применяться на практике. Была работа американских исследователей в 2020 году, в которой они утверждали, что достигли комнатной сверхпроводимости. Поначалу она вызвала много энтузиазма, но сейчас понятно, что работа неправильная, результат был некорректен».

Совместно с коллегами из Цзилиньского университета Артем Оганов и аспирант Дмитрий Семенок экспериментально продемонстрировали сверхпроводимость у двух супергидридов церия — CeH9, открытого в 2019 году, и у впервые синтезированного CeH10. Результаты исследования были опубликованы в сентябре 2021 года (Phys. Rev. Lett. 127, 117001 — 2021). Как сказано в статье, эти соединения являются идеальными объектами для будущих исследований механизма сверхпроводимости гидридов и создания других сверхпроводников, которые имеют стабильность при более низком давлении.

Наиболее высокотемпературные сверхпроводники были открыты как раз методом компьютерного дизайна, ускоренное развитие которого является базовым трендом года.

Николай Галкин/ТАСС; Александр Рюмин/ТАСС

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Яблоко без химии: кому это выгодно Яблоко без химии: кому это выгодно

Первый урожай российских органических яблок в продаже

Эксперт
И твоя мама тоже И твоя мама тоже

«Все совпадения неслучайны»: первый сериал Альфонсо Куарона

Weekend
Японцы запаслись даурской лиственницей Японцы запаслись даурской лиственницей

Японская компания выкупила допэмиссии акций российского лесопереработчика

Эксперт
Эдуард Ратников — о театре «Одеон» и жизни без больших концертов Эдуард Ратников — о театре «Одеон» и жизни без больших концертов

Эдуард Ратников и его путь от стадионных шоу до мюзиклов

Правила жизни
От совестливой номенклатуры — к буржуазному олигархату От совестливой номенклатуры — к буржуазному олигархату

Какую эволюцию прошла элита, прежде чем решилась свернуть советский проект

Эксперт
«Все время чего-то не хватает для счастья»: как перестать гнаться за успехом и начать радоваться тому, что есть «Все время чего-то не хватает для счастья»: как перестать гнаться за успехом и начать радоваться тому, что есть

Как не потерять вкус к жизни в погоне за достижениями?

Psychologies
Игры строгого режима Игры строгого режима

Олимпийские игры на фоне резкого усиления противостояния Китая и США

Эксперт
Никита Мещерский: Как король полного привода отстал от конкурентов Никита Мещерский: Как король полного привода отстал от конкурентов

Audi Quattro — культовый полноприводный автомобиль

4x4 Club
Боги, люди и поганки Боги, люди и поганки

Грибы занимают уникальное место не только в биосфере, но и в истории цивилизации

Вокруг света
Мама-предприниматель: какой бизнес чаще выбирают женщины в России Мама-предприниматель: какой бизнес чаще выбирают женщины в России

Почему в современном мире женщинам не нужно выбирать между семьей и карьерой

Inc.
«Делимобиль»: трудности коммунистического роста «Делимобиль»: трудности коммунистического роста

Выход «Делимобиля» на IPO призван решить проблему внушительного долга компании

Эксперт
Гигантские шершни добрались до Европы Гигантские шершни добрались до Европы

Южных гигантских шершней заметили в Испании

N+1
Им не хватало воздуха на горных перевалах Им не хватало воздуха на горных перевалах

Карабах рискует превратиться в новый рассадник мирового терроризма

Эксперт
Экономика падения Берлинской стены Экономика падения Берлинской стены

Поспешная интеграция Восточной Германии в Западную обошлась очень дорого

Монокль
7 лучших киногероев-скуфов, которыми мы гордимся 7 лучших киногероев-скуфов, которыми мы гордимся

Иногда даже лысеющий мужичок с пончиками может вдохновить на перемены

Maxim
6 правил хорошего брака 6 правил хорошего брака

Какие привычки повышают шансы на то, что вы будете жить вместе долго и счастливо

Psychologies
«Ученик»: почему фильм о молодом Трампе вызвал скандал и не выйдет в прокат в России «Ученик»: почему фильм о молодом Трампе вызвал скандал и не выйдет в прокат в России

«Ученик»: какой получилась скандальная картина?

Forbes
«Мне нужна была борьба»: как Екатерина Габашвили открывала в Грузии школы для девочек «Мне нужна была борьба»: как Екатерина Габашвили открывала в Грузии школы для девочек

Екатерина Габашвили: грузинская писательница и общественный деятель

Forbes
Стыд и завыванье Стыд и завыванье

«Месье Азнавур»: смехотворный байопик великого шансонье

Weekend
Гриша и школа Гриша и школа

Как помочь детям с опытом сиротства адаптироваться к школе? История Гриши

Новый очаг
Джонни, бегут Джонни, бегут

Как тяга к красивым цифрам заставила Антона Иванова пробежать 42 км в 42 года

Men Today
Дальнобойщики 2:0 Дальнобойщики 2:0

Страшно ли ехать в кабине беспилотного грузовика?

ТехИнсайдер
От любви до ненависти: представители каких профессий считаются самыми счастливыми и самыми несчастными в мире От любви до ненависти: представители каких профессий считаются самыми счастливыми и самыми несчастными в мире

Представители каких профессий, как правило, наслаждаются своим делом?

ТехИнсайдер
Важный показатель Важный показатель

Что такое гликированный гемоглобин, кому и зачем его стоит сдавать

Лиза
Новые русские ремесленники Новые русские ремесленники

Как делают свои прекрасные вещи настоящие ремесленники

Монокль
Я возвращаю ваш портрет Я возвращаю ваш портрет

Знакомство с профайлерами — специалистами, которые помогают ловить преступников

RR Люкс.Личности.Бизнес.
Последняя задача робототехники Последняя задача робототехники

Современные складские машины способны работать в 500 раз быстрее людей

ТехИнсайдер
Когда после смерти мужа или жены можно заводить новые отношения? Когда после смерти мужа или жены можно заводить новые отношения?

Как построить новую любовь после потери близкого человека?

Psychologies
Вместо «тренировки волос»: 4 работающих хака, которые помогут мыть голову реже Вместо «тренировки волос»: 4 работающих хака, которые помогут мыть голову реже

Можно ли натренировать волосы, чтобы они медленнее пачкались?

VOICE
Беги, мой хороший Беги, мой хороший

Пронзительная история проживания горя после потери любимой собаки

VOICE
Открыть в приложении