Хаотические системы подчиняются своим законам, но их все же можно прогнозировать

CHIPHi-Tech

Хаос в системе

Машинное обучение позволяет алгоритмам предсказывать эволюцию хаотических систем. Хорошие новости для метеорологов, врачей и глобальных систем электроснабжения.

Хаос. Крайне запутанный, непостижимый. Постоянное лихорадочное движение во всех направлениях. Описать этот беспорядок, кажется, невозможно. Тем более с тех пор, как пионеры теории хаоса открыли эффект бабочки. Даже малейшее возмущение сложной системы (погоды, экономики или другого подобного) может повлечь за собой цепочку событий, которая приведет к непредсказуемым последствиям в будущем. Поскольку мы не можем определить состояние этих систем с точностью, позволяющей предсказать дальнейший ход событий, мы живем, так сказать, под покровом неопределенности.

Но теперь для прогнозирования эволюции хаотических систем с любого момента времени до невероятно отдаленных горизонтов ученые задействовали машинное обучение — метод, стоящий за последними достижениями в области искусственного интеллекта (ИИ). Данные прогнозов получены специалистом по теории хаоса Эдвардом Оттом и четырьмя сотрудниками Мэрилендского университета. Они использовали резервуарные вычисления (Reservoir Computing), один из алгоритмов машинного обучения, чтобы «изучить» динамику типичной хаотической сис темы, называемой уравнением Курамото — Сивашинского. Это уравнение, по словам аспиранта Отта и главного автора исследований Джаидипа Патхака, служит в качестве «стандартного испытательного стенда для изучения турбулентности и пространственно-временного хаоса». В образном представлении эволюционирующее решение этого уравнения ведет себя словно фронт пламени, мерцающий при перемещении сквозь горючую среду. Промежуток времени, за пределами которого приемлемое предсказание о поведении системы становится невозможным, математики называют временем Ляпунова.

Данные вместо уравнений

Пройдя обучение на данных о прошлой эволюции уравнения Курамото — Сивашинского, алгоритм смог предсказать эволюцию этой системы, подобной пламени, в течение восьми периодов времени Ляпунова. «Это в самом деле очень хороший результат, — комментирует прогноз Хольгер Кантц, специалист по теории хаоса из Института физики сложных систем Общества Макса Планка в Дрездене. — Метод машинного обучения — это почти такое же благо, как и знание истины». При этом алгоритму ничего не известно о таких факторах, определяющих эволюцию, как собственно уравнение Курамото — Сивашинского. Он обрабатывает только данные об эволюционирующем решении граничных условий уравнения. В результате эта версия ИИ становится мощным средством для предсказания эволюции хаотической системы, поскольку во многих случаях уравнения, которые описывали бы хаотическую систему, вообще не известны. Из результатов исследований группы Отта вытекает простой вывод: знать уравнение системы вовсе не обязательно, самое главное — нужны только данные о ее эволюции. «Может быть, в один прекрасный день мы сможем предсказать погоду не с помощью очень сложных моделей атмосферы, а с помощью алгоритмов машинного обучения», — говорит Кантц.

Обычный подход к прогнозированию поведения хаотической системы заключается в том, чтобы максимально точно измерить ее условия в определенный момент времени, использовать эти данные для калибровки физической модели и затем привести ее в движение. Для получения приблизительного прогноза на восемь времен Ляпунова в таком случае нужно измерить начальные условия типичной системы в сто миллионов раз точнее. В статье, опубликованной в январском выпуске журнала Physical Review Letters (PRL), исследователи показывают, что предсказанное ими пламевидное решение уравнения Курамото — Сивашинского точно соответствует его истинному решению в пределах восьми времен Ляпунова вплоть до окончательной победы хаоса. Только с этого момента фактические и предсказанные состояния системы начинают резко расходиться.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Новое чувство астрофизики Новое чувство астрофизики

Миссия LISA станет самым большим научным инструментом в истории человечества

Популярная механика
Как научиться принимать комплименты Как научиться принимать комплименты

Почему бывает трудно принимать комплименты и как с этим справиться

Inc.
20 вещей, которые могут тебе пригодиться в постели 20 вещей, которые могут тебе пригодиться в постели

Объекты и явления, при помощи которых твой секс будет еще великолепнее

Maxim
Прививка от аллергии АСИТ — как она работает? Прививка от аллергии АСИТ — как она работает?

Вместо того чтобы смягчать симптомы аллергии, можно устранить причину

СНОБ
Человек, который придумывает будущее Человек, который придумывает будущее

Компания с российскими корнями разрабатывает уникальные технологии для авто

Популярная механика
8 вещей, которые нашатырный спирт сделает идеально чистыми 8 вещей, которые нашатырный спирт сделает идеально чистыми

Аммиак — один из самых мощных и недорогих бытовых очистителей

VOICE
Tesla для всех Tesla для всех

Возможности новой Tesla Model 3

CHIP
Очень странные дела Очень странные дела

Какие бьюти-тренды из соцсетей искренне настораживают косметологов

Лиза
Скрытые функции в Android и iOS Скрытые функции в Android и iOS

Как ускорить работу смартфона с помощью инструментов для разработчиков

CHIP
«Я всегда побеждаю»: как французская актриса Сара Бернар сделала себя сенсацией «Я всегда побеждаю»: как французская актриса Сара Бернар сделала себя сенсацией

История суперзвезды рубежа XIX-го и XX веков Сары Бернар

Forbes
100 самых сексуальных женщин страны 100 самых сексуальных женщин страны

100 самых сексуальных женщин страны

Maxim
Звезды манящие Звезды манящие

Ослепительная вспышка, которой уже некого слепить, миг неуловимый

Знание – сила
Анна Седокова Анна Седокова

Наверное, она уже привыкла к эпитетам «горячая», «аппетитная», «сочная»

Playboy
Эрдоган зажат между интересами США и Британии Эрдоган зажат между интересами США и Британии

Политический кризис в Турции может серьезно встряхнуть государство и регион

Монокль
Беспроводные колонки с мощным звучанием Беспроводные колонки с мощным звучанием

Тест 35 беспроводных колонок

CHIP
Патриотизм «подлинный» и «показной» Патриотизм «подлинный» и «показной»

Некогда мы гордились тем, что считали себя самой читающей страной

Дилетант
11 способов становиться немного умнее каждый день 11 способов становиться немного умнее каждый день

Интеллект, как и тело, требует правильного питания и регулярных тренировок

Psychologies
Золотые гривы Золотые гривы

Как в Ивашкове появилось ранчо с золотогривыми лошадьми

Отдых в России
Сеть знает обо всем, что вы делали Сеть знает обо всем, что вы делали

Популярные социальные сети собирают данные о пользователях

CHIP
Как утолить эмоциональный голод, если у вас нет партнера: 5 сфер, на которые стоит обратить внимание женщине Как утолить эмоциональный голод, если у вас нет партнера: 5 сфер, на которые стоит обратить внимание женщине

Одиночество — это не пустота, а пространство для наполнения своей жизни смыслами

Psychologies
Добро пожаловать в машину! Добро пожаловать в машину!

Оправдана ли суета вокруг дополненной реальности

CHIP
Еда с повышенным содержанием расходов Еда с повышенным содержанием расходов

Что толкает цены на продовольствие вверх

Эксперт
Био-механизм Био-механизм

Пауки, пожалуй, самые высокотехнологичные существа на планете

Вокруг света
Китайское рекламное чудо Китайское рекламное чудо

На какую рекламу тратят рекламный бюджет компании на российском рынке

Ведомости
Цветы и пчёлы Цветы и пчёлы

Красивейший пример сотрудничества — взаимоотношения пчёл и цветковых растений

Наука и жизнь
Ученые говорят, что наши мышцы стареют не так быстро, как нам кажется Ученые говорят, что наши мышцы стареют не так быстро, как нам кажется

У пожилых людей мышечные повреждения после спортивных нагрузок не так серьезны

ТехИнсайдер
В Эдем возьмут не всех: почему многие предсказания светлого будущего грешат социальным неравенством В Эдем возьмут не всех: почему многие предсказания светлого будущего грешат социальным неравенством

Размышления о будущем не всегда были свойственны людям

РБК
Русско-американские отношения в XIX веке. Часть 2 Русско-американские отношения в XIX веке. Часть 2

Какими были отношения США и России накануне войны между Севером и Югом

Наука и техника
Лучше гор Лучше гор

За вдохновением Николай Рерих пускался в реальные и весьма опасные странствия

Вокруг света
«Я женюсь на Гале каждый момент, когда на нее смотрю» «Я женюсь на Гале каждый момент, когда на нее смотрю»

Галина Вишневская и Мстислав Ростропович. Две выдающиеся личности

OK!
Открыть в приложении