Новое слово в энергетике: зачем России нужен атомный реактор с замыканием топливного цикла
Летом 2021 года в сибирском Северске началось строительство свинцового атомного реактора на быстрых нейтронах БРЕСТ-ОД-300. Он станет одним из трех элементов проекта Росатома «Прорыв», который уже к концу десятилетия должен продемонстрировать то, о чем ядерщики мечтали с середины прошлого века, - возможность замыкания топливного цикла.
Обычно ядерное топливо получают из минералов, до 1/4 массы которых приходится на уран. Его выделяют, превращают в оксид или другое твердое соединение и прессуют в таблетки.
Уложенные столбиками в металлические трубки топливных сборок, они помещаются в атомные реакторы, где и происходит контролируемая цепная реакция. Однако в природе лишь около 0,7% урана приходится на 235-й изотоп, который вовлекается в цепные реакции деления на АЭС, и даже после обогащения его доля поднимается максимум до 5%. Большая же часть топлива – практически бесполезный уран-238, который слишком стабилен и в реакциях деления тепловыми нейтронами не участвует, а после выгрузки отправляется на переработку и захоронение вместе с прочим радиоактивным мусором.
ГЦНА (главные циркуляционные насосные агрегаты) обеспечивают циркуляцию теплоносителя в первом контуре реактора.
ДИАМЕТР АКТИВНОЙ ЗОНЫ: 260 см.
ПАРОПРОИЗВОДИТЕЛЬНОСТЬ: 0,42 т/с, температура пароводяной смеси на выходе: 505 °С.
ТЕПЛОВАЯ МОЩНОСТЬ РЕАКТОРА: 700 МВт, электрическая мощность: 300 МВт.
РАСЧЕТНЫЙ СРОК СЛУЖБЫ: 30 лет.
Топливный цикл
Казалось бы, решение лежит на поверхности. Уран-238 способен «облучаться» – улавливать высвобождающиеся в ходе ядерных реакций нейтроны и превращаться в плутоний-239, который может послужить отличным топливом для новых реакций. Этот подход давно применяется в производстве оружейного плутония, и если реализовать его на АЭС, то загруженный в нее уран после работы можно будет рефабриковать, получая новое, обогащенное плутонием топливо для следующих циклов работы. Плутоний же выжигается снова и снова до тех пор, пока не превратится в короткоживущие изотопы, которые не представляют большой опасности при транспортировке и не требуют захоронения на долгий срок. Между тем сейчас такой срок для некоторых радиоактивных отходов может достигать сотен тысяч лет. Описанный подход называется замкнутым топливным циклом.
«Его главная цель – достижение радиационной эквивалентности атомной энергетики. Сколько радиоактивности мы извлекли из окружающей среды, столько же и возвращаем, не больше, – рассказывает Вячеслав Першуков, руководитель проекта Росатома «Прорыв». – А поскольку природных запасов урана-238 хватит на много тысяч лет, замкнутый цикл должен обеспечить нам и топливную независимость. Можно использовать даже обычный отвальный уран с обогатительной фабрики». Эти замечательные перспективы манили еще пионеров атомной энергетики, однако реализовать такие технологии на обычных реакторах оказалось невозможно.
Быстрые нейтроны
Работающий на АЭС уран-235, распадаясь, выбрасывает множество высокоэнергетических быстрых нейтронов. Они попадают в толщу воды, куда погружены топливные сборки. Жидкость замедляет нейтроны, позволяя тем взаимодействовать с новыми ядрами урана-235 и вовлекать их в цепную реакцию. Но большая часть выделяемой при делении энергии уходит на нагревание воды, которая играет еще и роль теплоносителя: отводит энергию, превращается в пар и вращает турбину электрогенератора. Водо-водяные реакторы – самые распространенные в мире, но для работы с плутонием они малопригодны. Такому топливу требуются быстрые нейтроны, а не замедленные тепловые, и это уже совсем другой уровень.