Книга «Космологические коаны. Путешествие в самое сердце физической реальности»

N+1События

«Космологические коаны. Путешествие в самое сердце физической реальности»

Наша Вселенная как будто намеренно спроектирована для существования жизни. Это может быть простым совпадением, а возможно, жизнь нашла бы способ возникнуть в любых условиях. В книге «Космологические коаны. Путешествие в самое сердце физической реальности» (издательство «Corpus»), переведенной на русский язык Татьяной Лисовской и Инной Кагановой, физик, космолог и математик Энтони Агирре исследует связь между структурой физического мира и субъективным человеческим опытом, предполагая, что в огромной Вселенной именно люди занимают центральное место. Для этого он заимствует методику и подход к размышлениям у дзен-буддистских притч — коанов. N + 1 предлагает своим читателям ознакомиться с отрывком, который посвящен задаче поиска легчайшего пути спуска с горы.

Дороги, которые мы выбираем
(Гималаи, 1612 год)

От вида с горного перевала захватывает дух, и ты застываешь, наслаждаясь бесконечными изгибами гор и манящими долинами, раскинувшимися под бескрайним небом. То есть дух бы наверняка захватывало, если бы ты мог нормально дышать… Ты немедленно начинаешь корить себя за то, что наслаждаться было бы гораздо легче, если бы твоя лошадь не сбежала, или повозка, в которую погружен весь твой скарб (и которую ты так легкомысленно отцепил от лошади), могла бы передвигаться сама по себе, или хотя бы дорога, по которой ты вынужден ее тащить, была бы сухой, а не размокшей из-за недавнего ливня. Ниже по склону ты видишь паутину троп, оставленных многочисленными спускающимися с перевала караванами. Ты слишком устал, чтобы как следует обдумать, какой путь самый лучший, и начинаешь спускаться по первой попавшейся тропе. Но очень скоро ты осознаешь, что ошибся, и приходишь к двум важным заключениям. Во-первых, повозка слишком тяжела, чтобы ты смог протащить ее по поднимающейся вверх тропе на заметное расстояние. Если же уклон становится слишком пологим, повозка увязает и ее очень трудно сдвинуть — и значит, существует минимальная крутизна тропинки, при которой ты с твоей повозкой можешь передвигаться. Во-вторых, пользоваться крутыми спусками гораздо легче и приятнее. Но если выбирать только их, то часть времени неизбежно придется либо перемещаться по слишком пологим участкам, либо подниматься в гору. Соответственно, ты должен найти баланс между крутыми участками пути и участками более пологими, которых на твоем пути больше. Наконец ты видишь вдалеке свою цель — все тропинки сходятся там у реки, которая разливается по равнине. Но вот вопрос: по какой тропе ты можешь попасть туда с наименьшими усилиями? Твои ноги гудят от усталости. Ты вспоминаешь, что вся еда осталась в тюках, навьюченных на лошадь, и что ты уже давно не ел. Руки и спина ноют от тяжелой ноши. Сложная сеть скрещивающихся троп протянулась на многие мили вниз по склону горы. Но как выбрать свою тропу? Так выбери же ту, что подходит именно тебе!

Поэт мог бы сказать, что вода течет с горы вниз из-за того, что ее притягивает море, но физик и обычный смертный скажет, что она течет так, как течет в каждой точке из-за того, что так устроена земная поверхность в данной точке, независимо от того, что лежит впереди. Бертран Рассел «Азбука относительности»

Проблема спуска с горы с затратой наименьшего усилия — это очень распространенный тип задачи о том, как выбрать путь в пространстве, когда какой то параметр минимизируется. Например, мы часто ищем путь наименьшей длины, то есть хотим попасть к месту назначения самым быстрым из всех возможных способом. Эта задача предполагает, что вы — в уме или на бумаге — перечислите возможные пути, измерите их длину и найдете кратчайший. Но вскоре вы можете обнаружить, что кратчайший и быстрейший пути — это не одно и то же: иногда по более длинной автостраде вы доедете гораздо быстрее, чем по короткой проселочной дороге. Чтобы найти самый быстрый путь, вы должны каждый из возможных путей разбить на сегменты длиной ∆ d и в каждом сегменте оценить скорость v, с которой вы можете преодолеть этот сегмент. Время, за которое вы преодолеваете данный сегмент, равно ∆ t = ∆d/v, а суммируя время по всем сегментам, вы получаете общее время, которое затрачивается при движении по этому пути. Сравнивая времена, относящиеся ко всем возможным путям, вы находите самый быстрый.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

«Император Святой Руси» «Император Святой Руси»

Что в XV-XVIII веках означало слово «чин»?

N+1
От Дюрера до Матисса От Дюрера до Матисса

Краткий экскурс в историю европейского рисунка XV–XX веков

Культура.РФ
Еще раз про банальность зла: в Каннах показали фильм Серебренникова о докторе Менгеле Еще раз про банальность зла: в Каннах показали фильм Серебренникова о докторе Менгеле

Что Серебренников хотел сказать зрителю в красивом фильме о докторе Менгеле?

Forbes
Грамота, которая нашлась дважды Грамота, которая нашлась дважды

История берестяной грамоты, найденной 70 лет назад и пропавшей на полвека

N+1
Занятия творчеством улучшают внимательность и память студентов Занятия творчеством улучшают внимательность и память студентов

Уделять время искусству может быть так же важно, как готовиться к экзаменам

ТехИнсайдер
Эволюция женской груди: от палеолитической Венеры до наших дней Эволюция женской груди: от палеолитической Венеры до наших дней

Предлагаем тебе взглянуть на историю человечества с этого ракурса!

Maxim
Бешенство: как защитить себя от смертельно опасной болезни Бешенство: как защитить себя от смертельно опасной болезни

Самую важная информация о бешенстве

РБК
Разница во времени Разница во времени

Если один из партнеров заметно старше, жди скандала

Cosmopolitan
«Дочь должна замаскировать татуировку или съехать из моего дома» «Дочь должна замаскировать татуировку или съехать из моего дома»

Родители не могут смириться с тем, что их дети принимают собственные решения

Psychologies
В новом цвете В новом цвете

5 простых способов креативного окрашивания стен

Лиза
Feduk — о новом альбоме, синдроме самозванца, праве на отказ и фридайвинге Feduk — о новом альбоме, синдроме самозванца, праве на отказ и фридайвинге

Feduk — о творчестве, «синдроме самозванца» и мировом соглашение с Элджеем

Esquire
«Красотка»,«Друзья»,«Мулен Руж!»: какими бы получись дети у культовых кинопар «Красотка»,«Друзья»,«Мулен Руж!»: какими бы получись дети у культовых кинопар

Мы немного пофантазировали на тему совместного будущего пар из любимых фильмов

Cosmopolitan
Почему мы регулярно видим один и тот же кошмар? Почему мы регулярно видим один и тот же кошмар?

Что означают кошмарные сюжеты снов, особенно если они регулярно повторяются

Psychologies
Почему спасать родителей от переживаний — не ваша задача Почему спасать родителей от переживаний — не ваша задача

Как вернуть себе эмоциональные границы в общении с родителями?

Psychologies
Британский авианосец Queen Elisabeth: королева глобальной политики Британский авианосец Queen Elisabeth: королева глобальной политики

Авианосец Queen Elisabeth — самый большой в британской истории боевой корабль

Популярная механика
7 убеждений, которые должен пересмотреть каждый предприниматель 7 убеждений, которые должен пересмотреть каждый предприниматель

7 неочевидных опасностей, которые грозят предпринимателям

Inc.
«Он никогда не строил из себя героя». Экскурсия Льва Лурье по адресам Довлатова в Петербурге «Он никогда не строил из себя героя». Экскурсия Льва Лурье по адресам Довлатова в Петербурге

Лев Лурье провел экскурсию по адресам Довлатова в Ленинграде

СНОБ
Ландшафт Марса может защитить колонистов от смертоносного излучения Ландшафт Марса может защитить колонистов от смертоносного излучения

Особенности марсианского рельефа могут существенно понизить угрозу облучения

Популярная механика
В тени: старшая дочь Маликовых и другие дети звезд, отказавшиеся от публичности В тени: старшая дочь Маликовых и другие дети звезд, отказавшиеся от публичности

Далеко не все дети знаменитостей хотят идти по стопам родителей

Cosmopolitan
Спортсмены. Наши чемпионы Спортсмены. Наши чемпионы

Они привезли олимпийское золото несмотря на то, что выступали без флага

GQ
Абьюз 80 уровня: девушка оказалась в инвалидной коляске из-за ревнивого бывшего Абьюз 80 уровня: девушка оказалась в инвалидной коляске из-за ревнивого бывшего

Парень сбросил девушке на спину бетонную плиту, а затем покончил с собой

Cosmopolitan
«Темная» сторона общепита: как изменился рынок доставки еды за полтора года пандемии «Темная» сторона общепита: как изменился рынок доставки еды за полтора года пандемии

Как изменились правила игры на рынке общественного питания

Inc.
Довлатов как он был. Фрагмент книги «Сергей Довлатов. Фотографии. Очерки и воспоминания» Марка Сермана Довлатов как он был. Фрагмент книги «Сергей Довлатов. Фотографии. Очерки и воспоминания» Марка Сермана

Фотографии и тексты Марка Сермана о Сергее Довлатове

Esquire
Законы привлекательности: нужен ли дома макияж Законы привлекательности: нужен ли дома макияж

Зачем дома носить макияж и есть в ли в нем необходимость?

Psychologies
«Меня едва не убило счастье»: как я оказалась на грани, несмотря на благополучие «Меня едва не убило счастье»: как я оказалась на грани, несмотря на благополучие

Внешнее благополучие не гарант душевного спокойствия: история Ники

Cosmopolitan
Этот предприниматель учился бесплатно в 4 странах  ― как повторить его опыт Этот предприниматель учился бесплатно в 4 странах  ― как повторить его опыт

Образование предпринимателю не нужно, а если и нужно, то лучшее и дорогое?

Inc.
От Nike к Uniqlo: как теннисист Роджер Федерер заработал $1 млрд на сотрудничестве с брендами От Nike к Uniqlo: как теннисист Роджер Федерер заработал $1 млрд на сотрудничестве с брендами

Благодаря умению общаться со спонсорами Федерер продолжит зарабатывать миллионы

VC.RU
Ивлеева Ивлеева

Блогерка Настя Ивлеева — зачем превратила себя в NFT-лот и про новое шоу

Собака.ru
«Ей выгодно быть больной»: свекровь притворяется, что у нее деменция? «Ей выгодно быть больной»: свекровь притворяется, что у нее деменция?

Когда потеря памяти свекрови — лишь «маска», которая помогает получить внимание

Psychologies
Как фильм «Эта дурацкая любовь» за десять лет стал антииллюстрацией мужской моды, но остается руководством по стилю Как фильм «Эта дурацкая любовь» за десять лет стал антииллюстрацией мужской моды, но остается руководством по стилю

Чему можно поучиться у героев фильма «Эта дурацкая любовь»

Esquire
Открыть в приложении