Специальная теория относительности помогла компьютеру предсказать будущее
Британские специалисты по машинному обучению разработали систему прогнозирования будущих событий, основанную на концепциях специальной теории относительности: причинности, пространства-времени Минковского и световых конусах. Алгоритм был успешно испытан в задаче предсказания и генерации новых кадров на основе набора изображений. По словам разработчиков созданный ими подход универсален, может применяться для множества задач и будет востребован там, где необходимо прогнозирование развития событий в будущем с учетом причинно-следственных связей, например в области медицины и в автономных транспортных средствах. Препринт выложен на arXiv.org.
Ежедневно, иногда сами того не замечая, мы пытаемся предсказать как будут развиваться события вокруг нас. Например, если у двигающегося перед нами автомобиля включен сигнал указателя поворота, то можно предполагать, что он с определенной вероятностью совершит маневр в соответствующем направлении. Однако, автомобиль также может продолжить движение без изменений, остановиться, или повернуть в противоположную указываемому направлению сторону. Эти события вероятны в большей или меньшей степени, и мы можем ожидать их, основываясь на опыте взаимодействия с миром и интуитивном понимании законов физики и причинно-следственных связей. С другой стороны, вряд ли мы будем всерьез рассматривать возможность того, что автомобиль внезапно исчезнет, и вместо него на дороге вдруг появится динозавр.
В отличие от людей, у компьютеров нет интуитивного понимания причинно-следственных связей, поэтому прогнозирование будущих событий для них оказывается непростой задачей. При этом во многих областях, где сегодня происходит интенсивное внедрение систем с машинным обучением, появление такой способности могло бы повысить уровень безопасности. Например, автомобиль под управлением автопилота мог бы спрогнозировать и оценить вероятность того, что стоящий у дороги ребенок может внезапного выбежать на проезжую часть.
Существующие подходы к решению задачи предсказания будущего в машинном обучении сводятся, например, к тренировке моделей на последовательностях кадров видео. Таким способом алгоритм обучают выявлять закономерности в событиях, которые в дальнейшем можно использовать для того, чтобы сгенерировать новые, ранее не существовавшие кадры, продолжающие эту последовательность. Например, можно показать программе последовательность кадров с двигающимся человеком, а затем попросить ее сгенерировать следующие несколько кадров, которые бы продолжили исходную последовательность. Однако у подходов, использующих серии и последовательности кадров, есть склонность быстро накапливать ошибки с увеличением числа сгенерированных кадров.