Прав ли сказавший, что наша жизнь – игра?

Вокруг светаИстория

Теория игр

Прав ли сказавший, что наша жизнь – игра, и может ли бесстрастная математика найти оптимальную стратегию, чтобы победить в этой игре?

Текст: Анатолий Глянцев

Играли ли вы сегодня во что-нибудь? Не спешите говорить «нет». Вы договорились о чем-то с другом, коллегой, членом семьи? Значит, вы играли. Выполняли свои служебные или бытовые обязанности? Это тоже игра. Делали покупки? Строили планы? Да-да, вы поняли. Жизнь вообще сплошная игра, по крайней мере, с точки зрения теории игр.

Что наша жизнь?

Теория игр – это не раздел экономики, политологии или социологии. Это раздел математики. Именно поэтому она описывает на едином языке любые игры, от шахмат до семейных споров. Мы увидим ниже, как в одну и ту же игру могут играть повздорившие супруги, азартные водители и хладнокровные политики. Игроки даже не обязаны быть людьми. Вашим партнером по игре может быть компьютерная программа или такая абстрактная категория, как рыночный спрос. Или даже сама природа в лице слепой случайности, если вы играете, скажем, в орлянку (этот раздел теории так и называется – игры с природой). Единственное, что отличает игры друг от друга – это их правила.

Теория игр – сложная наука, плотно сросшаяся с другими разделами высшей математики. Но ее важнейшие идеи можно объяснить без формул и на самых простых примерах (что совсем не значит, что до этих идей было легко додуматься!).

Однако не является ли сама теория игр не более чем игрой ума? Способна ли она подсказать полезные решения в бизнесе, политике, отношениях с людьми – во всех тех ситуациях, которые она дерзает описывать?

Что ж, приведем несколько примеров. В середине XX века специалисты по теории игр занимались вопросами ядерного сдерживания и гонки вооружений. В 1990-е «теоретико-игровики» из компании Market Design заработали миллионы долларов на аукционах по продаже радиочастот. Дадим слово одному из богатейших людей и известнейших инвесторов в мире Уоррену Баффету: «Представьте себе, что некий эксцентричный миллиардер (только не я!) делает такое предложение: если законопроект будет отклонен, этот эксцентричный миллиардер любым допустимым способом пожертвует миллиард долларов в пользу политической партии, которая отдаст больше всего голосов за принятие законопроекта. Благодаря такому дьявольскому применению теории игр законопроект спокойно пройдет через Конгресс, на что наш эксцентричный миллиардер не потратит ни цента – а это говорит о том, что он не так уж эксцентричен». Что имеет в виду Баффет? Каждая партия захочет получить миллиард и уж точно не захочет отдать его конкурентам. Поэтому все будут голосовать за законопроект, и он, конечно, будет принят. Но хитроумный богач не обещал никому платить, если закон будет принят! Так он добьется цели, применив не деньги, а знания.

Стратегия без стратега

Самое важное понятие в теории игр – стратегия. Стратегия игрока – это вся цепочка ходов, которые он делает. Даже если две линии поведения отличаются на один ход (вывести вперед королевскую пешку или ферзевую?), это уже две разные стратегии. Более того, стратегию определяют не только ходы, но и позиции, из которых те сделаны. Одно дело атаковать, когда противник безрассудно раскрылся, и совсем другое – лезть на подготовленную защиту.

Вы можете возразить, что играете в шахматы без продуманной и заранее выбранной стратегии. Просто делаете ход, который в данный момент считаете правильным. А уж о семейных спорах и деловых отношениях и вовсе не думаете в подобных терминах. Но, с точки зрения теории игр, то, что делает игрок, – и есть его стратегия. Так, с точки зрения лингвиста, все, что мы говорим – речь, даже если это отнюдь не торжественная речь политика перед народом. Так что коль скоро мы всю жизнь играем в игры, то и ежечасно пользуемся стратегиями. Даже если не подозреваем об этом, как господин Журден не подозревал, что говорит прозой. В простейшей формулировке задача теории игр – найти лучшую стратегию.

Теория игр считает игроков идеально рациональными, хотя реальные люди зачастую ведут себя иррационально

Дети и монеты

Для разминки рассмотрим игру, которую используют и в книжках по развитию детей, и в популярных телешоу. Аня и Боря по очереди убирают монеты со стола. За один ход можно убрать от одной до трех монет. Побеждает тот, кто забирает последнюю монету. Исходно на столе 10 монет, начинает Аня.

Возможные стратегии Ани непросто даже подсчитать в уме, не то что проанализировать каждую из них. У девочки три варианта первого хода. Затем ходит Боря, и на каждое из трех его возможных решений у Ани три варианта ответа, и так далее.

Многие в такой ситуации начали бы играть наугад. Возможно, осторожный игрок начал бы с одной монеты, агрессивный – с трех, а кто-то предпочел бы середину. Но математики знают идеальное решение, и для этого им вовсе не нужно перечислять все стратегии.

Первое правило теории игр – считать с конца, с победного хода. Если ваш последний ход принес победу, то каким был предпоследний? Ане нужно, чтобы на ее последнем ходу на столе лежало от одной до трех монет. Девочка заберет их и победит. Значит, Борю на его последнем ходу нужно оставить с четырьмя монетами. Он с ними останется, если на его предыдущем ходу будет восемь монет. Сколько бы из них мальчик ни взял, Аня в ответ возьмет столько, чтобы осталось четыре. Стало быть, на первом ходу ей нужно забрать две монеты из 10. Придерживаясь этой стратегии, девочка неминуемо выиграет.

Игры, в которые играют люди

Аня и Боря играли в очень специфическую игру. В ней у одной из сторон была стратегия, обрекающая другую на поражение. В большинстве игр это не так. Например, в шашках идеальные стратегии есть за обе стороны, и, если оба игрока их придерживаются, получается ничья. Как обстоит дело в шахматах, неизвестно. Эта игра очень сложна и до сих пор не просчитана полностью. Шутка ли: по приблизительным оценкам, различных шахматных партий около 10 120 (1 с 120 нулями). Это больше числа атомов в известной Вселенной!

Более того, игрокам не обязательно быть соперниками. Антагонистические игры, где выигрыш одного означает проигрыш другого – лишь одна из многочисленных разновидностей игр. Допустим, вы покупаете на рынке огурцы. У вас есть две стратегии: купить или нет, и у продавца две: продать или не продать. Если цена устраивает обе стороны, то покупка выгодна всем! Вы получаете вожделенные огурцы, а продавец – деньги.

Делая ход в шахматной партии или партии в шашки, мы выбираем стратегию. В принятии любого жизненного решения – та же логика

В поисках равновесия

Идеальной – как говорят математики, доминирующей – стратегии выгодно придерживаться при любой стратегии партнера. Если доминирующая стратегия есть, то задача теории – ее отыскать. А если ее нет? Тогда в игру вступает более тонкое понятие – равновесие Нэша.

Игроки находятся в равновесии Нэша, если их стратегии являются оптимальным ответом друг на друга. Может быть, Боря и не выигрывает, но его стратегия – лучшее, что можно предпринять в ответ на усилия Ани. И наоборот, стратегия Ани – лучший ответ на действия Бори.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

От поражения до победы От поражения до победы

Йом-кипур в Израиле отмечают практически все, даже не очень верующие люди

Дилетант
Какой получилась итальянская визовая программа для цифровых кочевников Какой получилась итальянская визовая программа для цифровых кочевников

В начале апреля Италия запустила визовую программу Digital Nomad

Forbes
Эверест как профессия Эверест как профессия

Высоко над нашими головами скрывается самая труднодоступная страна на планете

Вокруг света
Как не стать жертвой чистоты? Как не стать жертвой чистоты?

Мало кто догадывается, что средства чистоты могут стать причиной воспаления

Здоровье
Две жизни Хеди Ламарр Две жизни Хеди Ламарр

Скандальная кинозвезда или женщина, без которой не было бы Bluetooth и Wi-Fi

Вокруг света
Реалистичный позитивизм: 4 стратегии, чтобы жить лучше Реалистичный позитивизм: 4 стратегии, чтобы жить лучше

Реалистичный позитивизм: что за тип мышления, как он может улучшить вашу жизнь?

Psychologies
Аква инкогнита Аква инкогнита

Как вода нарушает правила жидкостей

Вокруг света
8 грубейших ошибок во время глажки белья, которые допускают все без исключения: узнайте, что портит ваши вещи 8 грубейших ошибок во время глажки белья, которые допускают все без исключения: узнайте, что портит ваши вещи

Как не стоит гладить белье, если вы не хотите испортить ткань и свое настроение

ТехИнсайдер
Вселенная Майнкрафта Вселенная Майнкрафта

В кубическом мире строят, копают и выживают более 130 миллионов игроков

Вокруг света
Эмоциональный шантаж: что это и как понять, что вы с ним столкнулись Эмоциональный шантаж: что это и как понять, что вы с ним столкнулись

Выслушивали ли вы когда-нибудь просьбу или требования против своего желания?

Psychologies
Гонки вокруг света Гонки вокруг света

Путешествие «леди Сенсация» привлекло внимание прессы и читателей по всему миру

Вокруг света
Москва по-собянински: азиатский город с архитектурными доминантами и фасадами Москва по-собянински: азиатский город с архитектурными доминантами и фасадами

Какую Москву хочет построить Сергей Собянин?

Монокль
Все против всех Все против всех

Не пытка, а силовой допрос. Не война, а операция по поддержанию порядка…

Дилетант
«Как умирали динозавры: Убийственный астероид и рождение нового мира» «Как умирали динозавры: Убийственный астероид и рождение нового мира»

Почему на Земле не началась вторая эра динозавров

N+1
Вызов простоты Вызов простоты

Как решение абстрактной задачи угрожает всей экономике?

Вокруг света
Принцип бинокля в отношениях Принцип бинокля в отношениях

Как щедрый мужчина может оставить тебя без копейки и при чем тут принцип бинокля

Лиза
Свобода лучше, чем несвобода Свобода лучше, чем несвобода

Анджела Дэвис почти полвека остаётся иконой борьбы с несправедливостью

Дилетант
Как на телефоне обрезать музыку: приложения и онлайн-сервисы Как на телефоне обрезать музыку: приложения и онлайн-сервисы

Из любого трека можно сделать рингтон, но как обрезать музыку для звонка?

CHIP
Доктор Доктор

Фантастический рассказ Александра Маркова «Доктор»

Знание – сила
Австралийская Toyota Land Cruiser Prado выйдет со странной решёткой радиатора и дизельным мотором Австралийская Toyota Land Cruiser Prado выйдет со странной решёткой радиатора и дизельным мотором

Каким будет новый Land Cruiser Prado от Toyota Australia

4x4 Club
«Ставить дружбу выше истины»: каково это — быть настоящим другом «Ставить дружбу выше истины»: каково это — быть настоящим другом

Дружба складывается не из схожестей людей, а из моментов, в которых они разнятся

Psychologies
Гибридный самолет Electra с восемью пропеллерами совершил сверхкороткий взлет и посадку Гибридный самолет Electra с восемью пропеллерами совершил сверхкороткий взлет и посадку

Electra понадобилось 52 метра для взлета и 35 метров для посадки

N+1
«Отменить свадьбу проще, чем жить в несчастливом браке»: 17 вопросов, на которые надо ответить до росписи «Отменить свадьбу проще, чем жить в несчастливом браке»: 17 вопросов, на которые надо ответить до росписи

17 вопросов, которые нужно задать себе и партнеру перед росписью

Psychologies
Супружеский «долг»: как на женщин влияет сексуализированное насилие в браке Супружеский «долг»: как на женщин влияет сексуализированное насилие в браке

Почему общество не замечает изнасилования в браке?

Forbes
«Умоляющие» глаза собак появились не для нас. Они есть у диких пород «Умоляющие» глаза собак появились не для нас. Они есть у диких пород

Собаки пользуются мимикой не только с человеком, но и для общения друг с другом

ТехИнсайдер
«Интимная история человечества» «Интимная история человечества»

Как уважение стало ценнее власти

N+1
По ту сторону мира: 5 книг о жизни после смерти от писателей-фантастов По ту сторону мира: 5 книг о жизни после смерти от писателей-фантастов

Как писатели-фантасты представляют загробную жизнь

ТехИнсайдер
Ландшафтная терапия. Горы, лес, море – что подойдет именно тебе для отдыха Ландшафтная терапия. Горы, лес, море – что подойдет именно тебе для отдыха

Чтобы получить от отпуска только пользу, важно правильно расставить приоритеты

Лиза
Наперекор Бажову Наперекор Бажову

Алиса Горшенина: женские корни волшебной сказки

Weekend
Я — сноб: писатель Шамиль Идиатуллин Я — сноб: писатель Шамиль Идиатуллин

Писатель Шамиль Идиатуллин — о своем романе и режиме «можно, в принципе»

СНОБ
Открыть в приложении