Нанопористый кремний — перспективный материал для микроэлектроники и биомедицины

Наука и жизньНаука

Кремний с нанопорами — материал с неисчерпаемыми возможностями

Доктор технических наук Георгий Савенков, Санкт-Петербургский государственный технологический институт (технический университет)

Диатомовые водоросли и их скелеты из окиси кремния. Сканирующая микроскопия. Фото из статьи: Nassif N., Livag J. From diatoms to silica-based biohybrids. Chemical Society Reviews, 2011, N 40. P. 849—859.

В последние два — два с половиной десятилетия учёные научились манипулировать материей в атомно-молекулярном масштабе. В результате удалось создать новые материалы и исследовать неизвестные ранее эффекты, появились нанонаука и нанотехнологии. Разработаны наноматериалы, физические и химические свойства которых радикально отличаются от их свойств в макромасштабе. Причём иногда новые материалы получают случайно. Один из них — нанопористый кремний, перспективный материал для микроэлектроники, биомедицины, ракетостроения и других приложений.

Пористый кремний (приставку «нано» он получил позже) случайно открыли супруги Артур и Ингеборг Улир (Uhlir), которые работали в Белл-лаборатории (Bell Labs, США) в середине 50-х годов XX века. Они разрабатывали метод электрохимической обработки кремниевых подложек для использования в микроэлектронике. В некоторых условиях кремниевая подложка стравливалась неравномерно, на ней появлялись маленькие отверстия — поры, распространявшиеся вдоль определённого кристаллографического направления. Любопытный результат Артур и Ингеборг Улир опубликовали в журнале «Bell Labs Technical Note» в 1956 году, но затем эта работа была благополучно забыта.

О нанопористом кремнии вспомнили в 1980-х годах, когда понадобился материал с большой площадью поверхности для спектроскопических исследований. Также его начали использовать в качестве диэлектрического слоя в ёмкостных химических сенсорах. Эти и другие возможные приложения нанопористого кремния вызвали огромное число исследований его свойств по всему миру. Постепенно в научной литературе прижился термин «пористый кремний». В настоящее время в зависимости от поперечного размера пор (d) пористый кремний по классификации Международного союза теоретической и прикладной химии (IUPAC) принято подразделять на макро- (d > 50 нм), мезо- (d от 2 до 50 нм) и микропористый кремний (d < 2 нм). Поскольку в любом случае размер его пор меньше 100 нм, здесь мы будем использовать термины «нанопористый» и «пористый», но предпочтение будет отдаваться первому.

Изображение поверхности нанопористого кремния, полученного электрохимическим травлением. Сканирующая микроскопия. Фото из статьи: Савенков Г. Г., Зегря А. Г., Зегря Г. Г. и др. Возможности энергонасыщенных композитов на основе нанопористого кремния (обзор и новые результаты) // Журнал технической физики. 2019. Т. 89. Вып. 3. С. 397—403.

От многооообразия способов рождения к многооообразию свойств

Нанопористый кремний обладает скелетной структурой, которая образуется в процессе анодного травления монокристаллического кремния (чаще всего, легированного бором или мышьяком) во фторидных электролитах. На поверхности раздела кристалл — электролит при этом образуются группы пятен электрохимической реакции, и они дают начало протяжённым ветвящимся каналам, порам, которые прорастают внутрь монокристалла. Причём размер и форма пор (цилиндрическая, разветвлённая, фасетная, фрактальная и другие), а также толщина перегородок между ними и пористость (то есть доля объёма, занятая порами) определяют свойства материала. Пористость может меняться от 5 до 95%, и, если она высока (≥ 70%), кремний приобретает уникальные свойства. Сами же размеры пор, их морфология и пористость материала в основном зависят от типа проводимости и уровня легирования исходного кремния, а также от состава электролита и плотности тока во время анодного травления. В меньшей степени эти параметры зависят от кристаллографической ориентации поверхности исходных кремниевых пластин.

Существует много способов получения нанопористого кремния. На момент написания статьи автору было известно 36, сейчас их может быть и больше. Условно их можно разделить на группы: травление (влажное или сухое, с катализаторами или без них), облучение, осаждение, а также термические, механические и химические методы. Но наиболее популярный и универсальный метод — упомянутое выше электрохимическое травление или анодирование, с его помощью удаётся создавать образцы с порами любых размеров. Самый красивый и оригинальный способ, пожалуй, — получение этого материала из диатомовых водорослей, а точнее, из их скелетов, состоящих из диоксида кремния. По сути, это готовые пористые структуры с интереснейшей морфологией пор. Неудивительно, что исследователи обратили на них внимание. Возможно, будет поставлена задача воспроизведения таких структур, но пока можно задуматься о том, где использовать пористые структуры, созданные природой.

Открытие, изменившее судьбу кремниевого наноматериала

Очередной всплеск интереса к пористому кремнию пришёлся на начало 1990-х, когда Ульрих Гёзеле (Ulrich Göesele), будучи профессором университета Дьюка (Duke University, USA), выявил квантово-размерные эффекты в спектре его поглощения, и одновременно Ли Кэнхэм (Leigh Canham) из британского Агентства по оборонным исследованиям (Defence Research Agency, England) обнаружил фотолюминесценцию пористого кремния в красно-оранжевой части спектра. Открытие эффекта излучения видимого света пористым кремнием вызвало поток работ, сосредоточенных на создании кремниевых оптоэлектронных переключателей, дисплеев и лазеров. Дело в том, что из-за ничтожно низкой (менее 0,001%) квантовой эффективности излучения монокристаллический кремний не годится для создания светоизлучающих устройств. После того, как Кэнхэм открыл у пористого кремния интенсивную фотолюминесценцию с квантовой эффективностью 5%, появилась возможность создания кремниевых приборов, излучающих свет в широком спектральном диапазоне. Оказалось, что цветом излучения (красный, зелёный и синий) нанопористого кремния можно управлять, изменяя условия анодирования, что важно для изготовления цветных дисплеев. И уже в начале 1990-х годов были созданы первые электролюминесцентные ячейки на основе нанопористого кремния, которые в многослойной структуре «прозрачный электрод —пористый кремний — монокристаллический кремний — металл» при протекании тока излучали свет.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Карина-вирус! Карина-вирус!

В это тревожное время героиней обложки стала главная медсестра страны

Maxim
@V0Vo4ka, к доске! Все, что стоит знать об онлайн-образовании @V0Vo4ka, к доске! Все, что стоит знать об онлайн-образовании

Самоизоляция просто ускорила то, что и так было неизбежным

Maxim
Восток и его обитатели Восток и его обитатели

В озере Восток под ледовым щитом Антарктиды есть жизнь

Популярная механика
Феминизм: реальная поддержка женщин или скрытая игра в пользу мужчин? Феминизм: реальная поддержка женщин или скрытая игра в пользу мужчин?

Психолог комментирует две противоположных точки зрения на феминизм

Psychologies
За кулисами пуска За кулисами пуска

Старт космической ракеты – зрелище без преувеличения грандиозное

Популярная механика
Заповедники: «Умный дом» для природы Заповедники: «Умный дом» для природы

Уйдут ли заповедники в прошлое или, наоборот, станут более востребованными?

Наука и жизнь
Био-механизм Био-механизм

Пауки, пожалуй, самые высокотехнологичные существа на планете

Вокруг света
«Пластические операции меняют меня к лучшему» «Пластические операции меняют меня к лучшему»

Как эксперты комментируют желание изменять себя хирургическими способами?

Psychologies
Эти странные силы инерции Эти странные силы инерции

Силы инерции — очень необычны

Наука и жизнь
Бизнесмены назвали 6 ошибок, которые никогда не совершают успешные люди Бизнесмены назвали 6 ошибок, которые никогда не совершают успешные люди

Учась на чужих провалах, можно добиться по-настоящему больших успехов

Playboy
Техпарад Техпарад

Новости мира науки и техники

Популярная механика
Уйди, противник! 14 странных армейских ритуалов и испытаний Уйди, противник! 14 странных армейских ритуалов и испытаний

От этих фотографий волосы встают на голове

Maxim
Электрический аммиак Электрический аммиак

Растворённые в воде нитраты можно превращать в полезный аммиак

Наука и жизнь
6 типов энергетических вампиров, которых нужно избегать (они тебя съедают) 6 типов энергетических вампиров, которых нужно избегать (они тебя съедают)

Такие люди опаснее вымышленных кровопийц

Playboy
Африканский след в истории обуви Африканский след в истории обуви

Сколько лет обуви?

Наука и жизнь
10 нелепых проблем, возникших из-за шрифтов 10 нелепых проблем, возникших из-за шрифтов

Шрифты, которые свергали правительства, вызывали протесты и многовековые споры

Maxim
Стратосферный турист Стратосферный турист

Звездное небо над головой и далекая Земля внизу – вид из стратосферы

Популярная механика
Проклятие Кипра: швейцарские банки начали обращать пристальное внимание на клиентов с кипрскими паспортами Проклятие Кипра: швейцарские банки начали обращать пристальное внимание на клиентов с кипрскими паспортами

Что не так с программой «инвестиции в обмен на гражданство»

Forbes
Поимка «тихого убийцы» Поимка «тихого убийцы»

Нобелевская премия 2020 года присуждена за открытие вируса гепатита C

Наука и жизнь
Необычные цвета и обманчиво простые костюмы: как Вигго Мортенсену удается выглядеть по-хорошему расслабленно на красных дорожках Необычные цвета и обманчиво простые костюмы: как Вигго Мортенсену удается выглядеть по-хорошему расслабленно на красных дорожках

Лайфхаки от Вигго Мортенсена: как всегда выглядеть круто

Esquire
Рыбак на краю галактики Рыбак на краю галактики

Как Геннадий Борисов открыл комету

Популярная механика
Революция в записи на магнитные носители: новое поколение Революция в записи на магнитные носители: новое поколение

Новый способ хранения информации на магнитных носителях

Популярная механика
10 способов манипулировать человеческим мозгом 10 способов манипулировать человеческим мозгом

Ученые постоянно изучают, как работает человеческий мозг

Популярная механика
Месть внука Месть внука

Сын казнённого царевича Алексея едва не пустил прахом все начинания деда

Дилетант
Идеальная пятёрка для домашнего тренинга Идеальная пятёрка для домашнего тренинга

Топ-5 предметов, которые помогут поддерживать форму дома

Худеем правильно
Правила жизни Никиты Михалкова Правила жизни Никиты Михалкова

Правила жизни режиссера и «бесогона» Никиты Михалкова

Esquire
Ненадежный пересказчик Ненадежный пересказчик

Новый сериал Netflix — вольная экранизация повести Генри Джеймса «Поворот винта»

Weekend
Магнитный бит перевернули за рекордное время Магнитный бит перевернули за рекордное время

В будущем магнитные носители информации будут быстрее и энергоэффективнее

N+1
Глава Bentley в России — о новом Bentayga и конкуренции в сегменте люкс Глава Bentley в России — о новом Bentayga и конкуренции в сегменте люкс

Интервью с Кристианом Шликом, главой марки Bentley в России

РБК
4 российских бренда, которые делают крутые худи 4 российских бренда, которые делают крутые худи

Выбирайте, что вам ближе: стритвир, минимализм или детские рисунки

GQ
Открыть в приложении