Космологии многое предстоит сделать в будущем, но серьезный фундамент уже создан

Знание – силаНаука

Современная космология – точная наука

Беседовал Игорь Харичев

Сегодня мы очень много знаем о Вселенной. Мы знаем, как она родилась, как развивалась в первые доли секунды, минуты, годы, сотни тысяч, миллионы и миллиарды лет, почему она такая, какая есть, и как будет развиваться дальше. Нет-нет, еще рано подводить черту, еще не на все вопросы получен ответ. Космологии многое предстоит сделать в будущем. Но серьезный фундамент уже создан.

Мы говорим о существенном вкладе в фундамент современной космологии отечественных ученых. Наш собеседник Игорь Иванович Ткачев, астрофизик, космолог и специалист в области физики элементарных частиц, академик РАН, доктор физико-математических наук, заведующий отделом экспериментальной физики Института ядерных исследований РАН.

«Знание – сила»: Игорь Иванович, космология тесно связана с физикой элементарных частиц. Наверное, если говорить о каких-то достижениях вообще космологии и о достижениях отечественных ученых, надо говорить и о космологии, и о физике элементарных частиц. Что реально можно предъявить как достижение отечественных ученых в этих двух сильно связанных сферах науки?

Игорь Ткачев: Я бы в этой паре выделил космологию. На удивление много российские ученые внесли в развитие космологии. Не знаю, с чем это связано. Возможно, с российскими просторами, когда во многих местах можно лечь на землю и вдосталь смотреть на полный небосвод в безлунную ночь.

Можно говорить об основополагающем вкладе наших ученых во всю космологию, включая современную, которая уже стала точной наукой. Александр Александрович Фридман (1888—1925), петербургский ученый, первым решил уравнение Эйнштейна, осознав, что его можно применить ко Вселенной в целом. Написал метрику, решил уравнение и показал, что Вселенная расширяется. Стационарного решения нет. Это фундаментальный вклад в космологию. Эйнштейн в это не поверил, долго с Фридманом переписывался, спорил, потому что для него такой результат был неприемлем: если Вселенная расширяется, значит, она расширяется изначально из сингулярности – из точки и из бесконечной плотности. Как так? Значит, был акт творения, а если акт творения, значит, должен быть творец, и это «не научно».

Эйнштейн считал, что Вселенная должна быть стационарна. Что она не меняется. (Хотя это тоже не решает проблемы: даже если она стационарна, откуда она взялась?) В общем, он хотел стационарной Вселенной, чтобы не было акта творения. И ввел космологическую постоянную в уравнение. Решил и нашел стационарное решение. Как потом выяснилось, решение неправильное. Если ввести космологическую постоянную, все равно будет Вселенная расширяться или сжиматься, в зависимости от того, на какой стадии находится. Если сжимается, потом будет отскок. Фридман помог ему понять, что решение было найдено неправильно. И он признал: это была самая большая ошибка его жизни – введение космологической постоянной. Позже выяснилось, что это как раз не ошибка. Космологическая постоянная есть, она подтверждена экспериментально в наблюдениях, и за это открытие дали Нобелевскую премию1.

1 В 2011 году Нобелевская премия по физике вручена космологам Солу Перлмуттеру, Брайану Шмидту и Адаму Риссу, собравшим доказательства того, что Вселенная расширяется с ускорением.

Александр Александрович Фридман

Космологическая постоянная работает как антигравитация, заставляя Вселенную расширяться с ускорением. Если гравитация замедляет движение разлетающихся тел, темная энергия действует обратным образом: тела все быстрее и быстрее будут удаляться. Но она проявляется на больших масштабах. Это энергия вакуума. И она играет сейчас, в общем, фундаментальную роль в нашем понимании, как появилась Вселенная, откуда взялось вещество в ней. Это как раз следствие того, что энергия вакуума может не быть равной нулю в современной физике элементарных частиц. Вакуум – сложное состояние, в котором нет реальных частиц, есть только виртуальные, которые рождаются и уничтожаются. Энергия вакуума – это энергия низшего состояния всех квантованных полей.

Энергия вакуума глазами художника

«ЗС»: Ускоренное расширение Вселенной означает, что сегодня в ее энергетическом балансе энергия вакуума доминирует над темной материей и обычным веществом.

И. Т.: Да, и мы вернемся к этому позже. Если говорить о вкладе российских и советских ученых в космологию в исторической последовательности, то следующий после Фридмана, первого столпа современной космологии, второй столп – это Георгий Антонович Гамов (1904—1968), отец теории горячей Вселенной. Исходно он был физик-ядерщик. И вот тут как раз проявляется связь физики элементарных частиц, астрофизики и космологии. Гамов создал теорию эволюции звезд, основанную на термоядерных реакциях. Вклад его тут огромен. Помимо прочего, он осознал, что основной энергетический механизм на Солнце – термоядерная реакция синтеза гелия из атомов водорода. Он рассчитал, зная светимость Солнца, сколько выделяется энергии, и соответственно сколько происходит таких реакций в единицу времени. Вычислил, сколько будет гелия наработано в Солнце за всю его историю. И увидел, что на Солнце гелия больше, чем то количество, которое там могло наработаться. И задался вопросом: откуда взялся в нашем светиле лишний гелий? И Гамов сделал правильный вывод, что когда-то Вселенная была горячей. Там и тогда и возник излишек, вне Солнца.

Георгий Антонович Гамов

Ну, а если она была горячая, то от этого должен был остаться какой-то след. То, что мы называем сейчас реликтовым излучением. Гамов посчитал его температуру и вычислил правильно. Сейчас космология шагнула далеко вперед, сейчас это прецизионная наука, очень строгая – с колоссальной точностью мы знаем и состав Вселенной, и ее историю, как раз изучая реликтовое излучение. А тогда все было на уровне гипотез и оценок. Гамов с учениками нашел, что в наше время температура этого излучения должна быть в районе от одного до десяти градусов выше абсолютного нуля. Удивительно точно для тех данных, которыми он располагал. В 1949 году Фред Хойл, который придерживался необоснованной концепции стационарной Вселенной, на радиошоу дал ироничное название теории горячей Вселенной Гамова: Big Bang, Большой Взрыв. Если быть точным, перевод с английского скорее Большой Хлопок, тут есть коннотация с «много шума из ничего». В 1950 году Гамов уточнил, что температура Вселенной сегодня скорее всего 3 градуса. Реликтовое излучение потом было обнаружено, с температурой 2,7 К, и за него дали Нобелевскую премию. Но увы, до того работы Гамова были забыты. Только в 1964 году сходные результаты, и их развитие, были вновь получены американскими физиками Робертом Дикке и Джимом Пиблсом, и советскими физиками Андреем Георгиевичем Дорошкевичем и Игорем Дмитриевичем Новиковым. Сложность принятия концепции подчеркивает тот факт, что их учитель, выдающийся советский физик Яков Борисович Зельдович (1914—1987), вплоть до экспериментального открытия реликтового излучения придерживался теории холодной вселенной.

«ЗС»: На самом деле экспериментально реликтовое излучение обнаруживали и до работ Гамова. Только не понимали, с чем имеют дело.

И. Т.: Да, первое косвенное обнаружение на тот момент непонятного микроволнового излучения имело место в 1941 году. Канадский астроном Эндрю Мак-Келлар изучал звездные спектры в Галактике и обнаружил спектральные линии поглощения света, которые им объяснялись, только если поглощающие молекулы возбуждаются излучением неизвестной природы с температурой примерно два с половиной градуса Кельвина. Но теории горячей Вселенной еще не было, началась Вторая мировая война, и все было забыто.

В 1955 году советский радиофизик Тигран Арамович Шмаонов, который был тогда аспирантом в Пулковской обсерватории, занимаясь проблемой калибровки радиотелескопов, обнаружил, что куда ни посмотри на небо, всюду есть излучение в 3 градуса. Это был неожиданный результат. Все мировое научное сообщество считало, что никакого такого излучения быть не должно. Гамов‑то ведь был забыт. Тигран Арамович долго мучился, обсуждал с теоретиками, но объяснения этому не было найдено. Но он верил в свои данные и статью с результатами этих калибровок все-таки опубликовал, считал, что за этим стоит настоящий эффект. По преданию, он даже видел 3 градуса, плюс-минус градус. Не знаю как было на самом деле, но в опубликованной его статье 4 плюс-минус 3. Так или иначе, он видел реликтовое излучение за 8 лет до его официального открытия.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Обжигаемый Солнцем: экскурсия на Меркурий Обжигаемый Солнцем: экскурсия на Меркурий

Какие же тайны и интересные особенности скрывает Меркурий?

Наука и жизнь
Рузиль Минекаев: «В школе я не был крутым парнем» Рузиль Минекаев: «В школе я не был крутым парнем»

Как Рузиль Минекаев реагирует на навязчивых фанаток и почему боится славы

VOICE
Зачем чипу родина Зачем чипу родина

Возврат к собственным разработкам возможен только через кризис

Монокль
Ослепительная четверка Ослепительная четверка

Эти женщины вершили китайскую историю, губили и спасали царств

Вокруг света
Дважды великий князь Дважды великий князь

Дмитрий Шемяка — умелый полководец и дипломат, который оказался забыт

Дилетант
Любовное онлайн-настроение Любовное онлайн-настроение

«Прошлые жизни»: сентиментальный роман цифровой эпохи

Weekend
90 минут и шесть миллионов жизней 90 минут и шесть миллионов жизней

На Ванзейской конференции был согласован план «решения еврейского вопроса»

Дилетант
Если вам немного за 30: как укрепить спину дома Если вам немного за 30: как укрепить спину дома

Как с помощью простых упражнений получить хороший профит для спины

Правила жизни
7 таинственных синдромов, которые не могут объяснить даже величайшие психиатры 7 таинственных синдромов, которые не могут объяснить даже величайшие психиатры

Психические расстройства, про которые ученые не знаю практически ничего

Psychologies
Историки установили кто придумал десятичную точку. Это великое открытие случилось в 1440 году, но о нем надолго забыли Историки установили кто придумал десятичную точку. Это великое открытие случилось в 1440 году, но о нем надолго забыли

Открытие Джованни Бьянкини было слишком революционным и было забыто

ТехИнсайдер
Не только Белка и Стрелка: 5 историй животных, которые побывали в космосе Не только Белка и Стрелка: 5 историй животных, которые побывали в космосе

В эпоху активного освоения космоса на орбиту Земли отправились не только люди

ТехИнсайдер
Шок-контент Шок-контент

Вездеход здорового горожанина

Автопилот
Великое чаепитие Великое чаепитие

И сегодня Великий чайный путь не забыт – по нему путешествуют туристы

Лиза
Как ускорить браузер Google Chrome: несколько небанальных советов Как ускорить браузер Google Chrome: несколько небанальных советов

Как ускорить работу браузера Google Chrome без банальностей вроде чистки кэша

ТехИнсайдер
Сохраните эту памятку! Как использовать пауэрбанк, чтобы избежать несчастных случаев Сохраните эту памятку! Как использовать пауэрбанк, чтобы избежать несчастных случаев

Что нужно учесть, приобретая пауэрбанк?

ТехИнсайдер
Водный баланс. Можно ли пить воду во время тренировки и сколько Водный баланс. Можно ли пить воду во время тренировки и сколько

Вода важна для физической активности, поскольку это предотвращает обезвоживание

Лиза
Будет как шелковый Будет как шелковый

«Китайцы» снова на Кавказе

Автопилот
«Если дружба, то навсегда, если обида, то смертельная»: как подростковый опыт общения влияет на дальнейшую жизнь «Если дружба, то навсегда, если обида, то смертельная»: как подростковый опыт общения влияет на дальнейшую жизнь

Дружба для подростков — один из центральных этапов социальной сплоченности

Psychologies
«Хочешь жениться — построй завод» «Хочешь жениться — построй завод»

Как в современной России решаются проблемы промышленного дефицита

Монокль
«Галиматья»: давайте разбираться, откуда растут ноги у этого слова «Галиматья»: давайте разбираться, откуда растут ноги у этого слова

Мы расскажем о происхождении слова «галиматья»

ТехИнсайдер
Стаканы из TikTok, Энди Уорхол и волосы: 5 самых странных коллекций Стаканы из TikTok, Энди Уорхол и волосы: 5 самых странных коллекций

Собрание коллекционера может рассказать о его личности больше, чем он сам

Правила жизни
По любви По любви

История безответной любви – для думающих людей, которые прожили жизнь

Grazia
Автосохранение Автосохранение

Проекты советских гаражей столетней давности

Автопилот
Робот научился наводить порядок в незнакомом доме Робот научился наводить порядок в незнакомом доме

Робот, который способен подбирать определенные объекты в незнакомой комнате

ТехИнсайдер
Взяла и успокоилась. 4 лекарственных растения, которые стоит держать в домашней аптечке Взяла и успокоилась. 4 лекарственных растения, которые стоит держать в домашней аптечке

Природа – лучший лекарь. Главное – научиться использовать ее потенциал

Лиза
Наталья Метелица Наталья Метелица

Наталья Метелица придумывает гениальные иммерсивные выставки

Собака.ru
Изменить будущее: что такое трансформационные игры и почему стоит их попробовать Изменить будущее: что такое трансформационные игры и почему стоит их попробовать

Трансформационные игры — просто забава или способ поменять свою жизнь?

VOICE
Резиденция божеств: почему альпинисты не могут покорить гору Кайлас в Тибете Резиденция божеств: почему альпинисты не могут покорить гору Кайлас в Тибете

Таинственная и необычная история горы Кайлас

ТехИнсайдер
Тактильные часы Готфрида Вильгельма Лейбница Тактильные часы Готфрида Вильгельма Лейбница

Текст и рисунки рукописи Лейбница относятся к часам оригинальной конструкции

Наука и жизнь
Кошка-рыболов украла птенцов из гнезда бакланов Кошка-рыболов украла птенцов из гнезда бакланов

Кошки-рыболовы способны забираться на высокие деревья и разорять гнезда птиц

N+1
Открыть в приложении