2020 останется в истории как сорокалетний юбилей Второй квантовой революции

Наука и жизньНаука

Дрессировка кошек Шрёдингера в промышленных масштабах

Александр Загоскин, университет Лафборо (Великобритания)

Иллюстрация: pixabay.com

On s’engage, et puis on voit («Сначала надо ввязаться в бой, потом будет видно»).
Приписывается Наполеону

В фантастических романах главное это было радио. При нём ожидалось счастье человечества. Вот радио есть, а счастья нет.
И. Ильф. Записные книжки

Не отличись 2020 год многими другими странными событиями, он мог бы войти в историю как сорокалетний юбилей Второй квантовой революции. В 1980 году выдающийся советский математик Юрий Манин во введении к своей книге «Вычислимое и невычислимое» отметил, что квантовое вычислительное устройство — квантовый компьютер — будет обладать гораздо большим пространством состояний, чем классический с тем же числом элементов. Независимо от него в 1982 году ещё более выдающийся американский физик Ричард Фейнман в статье «Симулирование физики компьютерами» подошёл к вопросу с другой стороны: можно ли эффективно моделировать большую квантовую систему с помощью классических вычислительных устройств? И ответил: нет, её пространство состояний слишком велико, нужен именно квантовый компьютер.

Прежде чем рассказывать, какое отношение эти события имели ко Второй квантовой революции и что это за революция, нужно вспомнить, что такое «пространство состояний» и почему именно у квантовой системы оно так велико. Для простоты сравним набор обычных и квантовых битов.

Бит — это физическая система, которая может находиться в одном из двух возможных состояний («вверх-вниз», «право-лево», «вкл.-выкл.» и т. п.). Их удобно обозначать просто нулём и единицей. Набор из N битов может, таким образом, закодировать любое число от нуля до 2N –1 в двоичной системе счисления.

Квантовый бит, или кубит, отличается от обычного (классического) бита тем, что может находиться в любой суперпозиции состояний 0 и 1. Используя обозначения, введённые почти сто лет назад Полем Дираком, это можно записать так:

Здесь |ψ〉 — состояние кубита, а величины a и b, такие, что |a|2 + |b|2 = 1, говорят о том, чего в состоянии кубита «больше» — нуля или единицы. Это не значит, что если состояние кубита измерить, то получится что-то среднее между ними. Всегда получится либо ноль, либо единица — но если взять и измерить много кубитов в одном и том же состоянии |ψ〉, то доля тех, которые дадут ноль, будет |a|2, а тех, которые дадут единицу, — |b|2. Предсказать, что именно получится при каждом измерении, нельзя. Это не недостаток теории, а принципиальное свойство природы, очень хорошо подтверждённое и экспериментами, и практикой: природа принципиально случайна.

При слове «измерение» не нужно непременно представлять себе учёного с измерительным прибором. Этим словом для краткости обозначают любое взаимодействие кубита с окружающим миром, которое заставляет его в конце концов занять одно из состояний |0〉 или |1〉. В таком случае говорят, что измерение разрушает квантовую суперпозицию.

Однако вернёмся к кубиту до того, как его измерили. Чтобы описать его состояние |ψ〉, нужно не два числа, а целое двумерное пространство. Как для того, чтобы задать точку на плоскости, нужны координаты x и y, так и здесь нужны два числа, a и b. Эти числа не простые, а комплексные, но здесь это не принципиально. Важно то, что кубит «живёт» в двумерном пространстве. По сравнению с классическим битом, «живущим» всего в двух точках (0 и 1), квантовый бит — буквально властелин бесконечности.

Если теперь взять два кубита, то им потребуется уже четырёхмерное пространство. Действительно, два кубита могут находиться в любой суперпозиции четырёх состояний |00〉, |01〉, |10〉, |11〉 (здесь первая цифра говорит о состоянии кубита номер один, а вторая — кубита номер два), и для её описания нужно четыре числа, a, b, c ,d. Для трёх кубитов таких чисел потребуется уже восемь: каждый лишний кубит может быть в двух состояниях, поэтому число коэффициентов удваивается.

Интерпретация суперпозиции. Показано двоичное кодирование с помощью направлений спинов в системе из четырёх кубитов. Если последний кубит на нижнем рисунке находится в суперпозиции состояний «вверх» и «вниз», то вся система находится в суперпозиции состояний |4〉 и |5〉

Система из N кубитов обитает в пространстве размерностью 2N. Это значит, что для задания состояния 50 кубитов нужно задать 1 125 899 906 842 624 координаты, а для 5000 кубитов — больше чем 101505 координат (для точной записи этого числа потребовалось бы полстраницы цифр). Число атомов в наблюдаемой Вселенной не превышает 1080 и уместилось бы меньше чем в две строки. Неудивительно, что эффективно промоделировать поведение даже такой небольшой квантовой системы не сможет никакой классический компьютер.

Теперь перейдём ко Второй квантовой революции. Сначала, естественно, надо упомянуть Первую, тем более что на её достижениях стоит значительная часть современной цивилизации. Первая революция произошла в середине прошлого века, когда результаты квантовой механики применили в технике. Изначально таким применением было, естественно, военное — как и в большинстве передовых технологий в истории человечества, от стали и взрывчатки до радаров и ракет. Атомное оружие и атомная энергетика стали прямым результатом использования квантовой теории в ядерной физике и большим стимулом к её дальнейшему совершенствованию. Затем последовали электроника и сверхпроводниковые устройства, основанные на квантовой теории конденсированного состояния (то есть всего, что не газ и не плазма), и лазеры — на квантовой теории света и его взаимодействия с веществом. Без Первой квантовой революции вы не читали бы эту статью с экрана компьютера или смартфона, не пользовались бы интернетом.

Сейчас вам захочется остановить меня и сказать: что-то у вас тут не сходится. Лазеры, компьютеры и атомные бомбы содержат не тысячи, а триллионы триллионов атомов. Как же можно было описать и предсказать их поведение, пользуясь даже не обычными компьютерами, а карандашом, бумагой и логарифмической линейкой? Это совершенно законный вопрос, ответ на который — всё сходится. Просто нам всем невероятно повезло.

Дело в том, что квантовые эффекты, лежащие в основе Первой революции, затрагивают за раз очень небольшое число квантовых объектов или, выражаясь точнее, небольшое число квантовых степеней свободы (то есть независимых переменных, нужных для описания данного явления). Скажем, в квантовой теории конденсированного состояния достаточно часто можно свести описание поведения огромного числа взаимодействующих между собой электронов и ионов к поведению почти не взаимодействующих между собой квазичастиц. (Именно в этом нам и повезло.) В металле это так называемые электроны проводимости и фононы, в полупроводнике — электроны проводимости, фононы и дырки. Их, конечно, очень много, но раз они не взаимодействуют между собой, их можно рассматривать по отдельности, и задачу иногда можно решить вообще без компьютера, с помощью карандаша и бумаги. В сверхпроводниках ситуация сложнее; там образуется макроскопическое квантовое состояние, занимающее весь объём сверхпроводника. Но хотя в нём участвует заметная доля всех электронов сверхпроводника, это состояние можно описать всего лишь одним комплексным числом (которое называется «параметр порядка»), зависящим от одной пространственной координаты, так что и там мы имеем дело с небольшим числом квантовых степеней свободы. Говоря более формально, в Первой квантовой были задействованы квантовые эффекты, не использующие квантовые корреляции высокого порядка.

Покажем разницу на примере системы (регистра) из трёх кубитов. В регистр из трёх классических битов можно записать любое двоичное число от нуля (000) до семи (111). Но каждый квантовый бит независимо от других может быть в суперпозиции состояний 0 и 1. Поэтому состояние всего регистра можно записать как

Таким образом, в квантовый регистр можно записать все числа от нуля до семи одновременно. Эта удивительная возможность вовсю используется в квантовых алгоритмах, но её одной было бы совершенно недостаточно. Дело именно в том, что в состоянии |ψ0〉 все кубиты независимы. Если один из них перестанет находиться в суперпозиции и «свалится» в состояние 0 или 1, другие этого не почувствуют: каждый по-прежнему останется в суперпозиции своих состояний 0 и 1. Говорят, что состояние |ψ0〉 факторизовано (то есть может быть записано как произведение состояний отдельных кубитов).

Совсем другое дело, если регистр находится в так называемом состоянии Гринберга—Хорна—Цайлингера

Если мы измерим состояние кубита номер один, то суперпозиция его состояний разрушится — он окажется в состоянии 0 или 1 с одинаковой вероятностью ½. Беда в том, что все оставшиеся кубиты окажутся в том же состоянии, что и первый кубит. Из-за измерения только одного кубита ни один кубит не останется в суперпозиции квантовых состояний. Другими словами, если суперпозиция состояний хоть одного кубита разрушена, то разрушено квантовое состояние сразу всего регистра.

Такие квантовые состояния, в которых измерение одного кубита влияет на остальные, называются запутанными (или спутанными). |ψGHZ〉 — пример квантового состояния, в котором запутаны три кубита. А для того чтобы квантовые алгоритмы сработали для сколько-нибудь практически интересных задач, потребуются запутанные состояния не трёх, а сотен и тысяч кубитов.

Что может разрушить суперпозицию состояний одного кубита? Да что угодно! Флуктуации электромагнитного поля, тепловые колебания кристаллической решётки материала кубита или его окружения, в общем, то, что называется «шум». Любое достаточно сильное взаимодействие с окружающим миром может привести к тому, что вместо суперпозиции кубит окажется либо в состоянии |0〉 (с вероятностью |a|

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Губернатор печального образа Губернатор печального образа

В марте 1800 года в Твери от затора льда на Волге произошло большое наводнение

Наука и жизнь
Как пережить безответную любовь. Советы психолога Как пережить безответную любовь. Советы психолога

Для чего существует безответная любовь? Почему некоторые живут с ней годами?

РБК
Женский орден на мужской груди Женский орден на мужской груди

Система орденов Российской империи отличалась от советского времени и наших дней

Дилетант
10 мужских правил от главного редактора MAXIM 10 мужских правил от главного редактора MAXIM

Грех скрывать эти мужские правила от общественности!

Maxim
Иллюзия успеха Иллюзия успеха

Четыре истории о талантливых мастерах пускать пыль в глаза

Популярная механика
Багира промахнулась. Почему танк «Пантера» не оправдал ожиданий Багира промахнулась. Почему танк «Пантера» не оправдал ожиданий

Когда теория не подтверждается практикой

Maxim
Торфяной кризис в Ирландии — дитя «зеленой» повестки Торфяной кризис в Ирландии — дитя «зеленой» повестки

Ирландия под давлением «зеленых» отказалась от добычи торфа раньше срока

Эксперт
Бизнес по зернышку: как топ-менеджер «Еврохима» бросил карьеру в корпорациях и вытеснил перекупщиков на агрорынке Бизнес по зернышку: как топ-менеджер «Еврохима» бросил карьеру в корпорациях и вытеснил перекупщиков на агрорынке

Егор Кирин бросил работу в Швейцарии и зарплату, чтобы запустить свою платформу

Forbes
Флагман индустрии Флагман индустрии

В СССР Нижний Новгород превратился в ведущий промышленный центр страны

Дилетант
Путевые рекомендации: как снизить наносимый транспортом вред здоровью Путевые рекомендации: как снизить наносимый транспортом вред здоровью

Изменения, которые сделают автомобили удобнее и сохранят здоровье пассажиров

Forbes
О чём пишут научно-популярные журналы мира О чём пишут научно-популярные журналы мира

Открытие Америки, спорт, климат и немного цифр: все, о чем пишут научпоп-журналы

Наука и жизнь
«Обещала ухаживать за больной бабушкой, но больше так жить не могу» «Обещала ухаживать за больной бабушкой, но больше так жить не могу»

Старение — естественный этап нашей жизни и важный опыт для семьи

Psychologies
Какая зубная паста тебе подходит? Какая зубная паста тебе подходит?

Как выбирать средства гигиены, чтобы они не навредили здоровью полости рта?

Лиза
7 психологических уловок, против которых бессилен наш мозг 7 психологических уловок, против которых бессилен наш мозг

Список «багов» в нашем сознании, которые позволяют нами манипулировать

Maxim
Достойны восхищения: фильмы о великих женщинах Достойны восхищения: фильмы о великих женщинах

Десять великих женщин, о которых сняли удивительные фильмы

Cosmopolitan
13 историй знаменитостей, которые тайно поженились 13 историй знаменитостей, которые тайно поженились

Кому из знаменитостей удалось сыграть секретные свадьбы?

РБК
10 лучших ужастиков для летнего вечера 10 лучших ужастиков для летнего вечера

ТОП-10 самых страшных фильмов ужасов

Cosmopolitan
«Заостряйте конфликт — и делайте это быстро»: Джефф Безос о магии утра и худших в мире решениях «Заостряйте конфликт — и делайте это быстро»: Джефф Безос о магии утра и худших в мире решениях

Два эссе Безоса из книги Invent and Wander

Forbes
Как изменилось искусство с приходом новых технологий Как изменилось искусство с приходом новых технологий

VR и AR и полное погружение в искусство – вплоть до запахов, звуков и ощущений

GQ
7 распространенных заблуждений о том, что помогает в жару 7 распространенных заблуждений о том, что помогает в жару

Мы собрали 7 мифов о том, что помогает во время жаркой погоды

Maxim
Была лидером рынка, но проиграла Samsung и Apple: история HTC — производителя первых смартфонов на Android Была лидером рынка, но проиграла Samsung и Apple: история HTC — производителя первых смартфонов на Android

С чего начинала компания HTC и чем она занимаются сейчас?

VC.RU
Худеть не помогают! Самые популярные массажеры для тела, от которых нет толку Худеть не помогают! Самые популярные массажеры для тела, от которых нет толку

Неэффективные массажеры для тела

Cosmopolitan
История немецкой философии — в биографиях четырех крупнейших философов XX века: фрагмент книги Вольфрама Айленбергера «Время магов» История немецкой философии — в биографиях четырех крупнейших философов XX века: фрагмент книги Вольфрама Айленбергера «Время магов»

Глава из книги «Время магов. Великое десятилетие в философии 1929−1939»

Esquire
Как понять вино без сомелье-переводчика: все тонкости взаимоотношений с напитком Как понять вино без сомелье-переводчика: все тонкости взаимоотношений с напитком

Налаживаем диалог с вином самостоятельно

Playboy
Между Лией и Рахилью Между Лией и Рахилью

Данте и Мандельштам о техниках выживания в тяжелые времена

Weekend
Голая грудь и шалости на пляже: лучшие пикантные провокации Юлии Пересильд Голая грудь и шалости на пляже: лучшие пикантные провокации Юлии Пересильд

Юлия Пересильд умеет демонстрировать сексуальность

Cosmopolitan
«Дневники Киллербота» Марты Уэллс: один из самых титулованных фантастических циклов современности «Дневники Киллербота» Марты Уэллс: один из самых титулованных фантастических циклов современности

5 причин, почему читатели полюбили приключения андроида-мизантропа

Популярная механика
Толстая и ленивая: как Диккенс насмешками выжил жену из дома Толстая и ленивая: как Диккенс насмешками выжил жену из дома

Как Чарльз Диккенс издевался над своей женой

Cosmopolitan
Фильмы про драконов: топ-10 огнедышащих картин для увлекательного вечера Фильмы про драконов: топ-10 огнедышащих картин для увлекательного вечера

Подборка лучших картин про драконов, магию и рыцарей

Playboy
Печать навсегда: 5 бумаг, которые изменили мир Печать навсегда: 5 бумаг, которые изменили мир

Бумаги, которые определили ход истории на несколько веков вперед

Inc.
Открыть в приложении