Ограничены ли нейросети в своих возможностях?

ЭкспертHi-Tech

Может ли искусственный интеллект предсказывать будущее

Нейросети ограничены потребностью в больших данных, способностями к концептуализации и непредсказуемостью людей

Варвара Гузий, Виталий Лейбин

Искусственный интеллект поможет предсказывать вероятное будущее, но не избавит людей от необходимости осознавать себя и делать свой выбор

По миру стремительно распространяется волна радостных и одновременно панических публикаций относительно возможностей искусственного интеллекта. Причиной столь бурной реакции СМИ стал запуск нейросетевой языковой модели ChatGPT-4, которая заметно превосходит все предыдущие версии. ChatGPT, конечно, не разум, подобный человеческому, — это именно языковая, разговорная, хотя и очень большая мультимодальная модель. Бота обучали на текстах естественных человеческих языков (и некоторых формальных, в том числе математики и программирования), и теперь на основе этого опыта он может почти моментально генерировать сообщения разного качества и разной степени осмысленности.

Новый инструмент оказался не только отличным помощником в написании рефератов и решении несложных задач, но и удивительно интересным собеседником. Как результат, в мире развернулась дискуссия о возможностях «сильного» («настоящего», «общего») ИИ. Так, группа исследователей из Microsoft выложила в открытый доступ статью «Проблески общего искусственного интеллекта: первые эксперименты с GPT-4»), в которой ученые утверждают, что чат-бот демонстрировал признаки способности к абстрагированию, понимание человеческих эмоций и многое другое.

Известный футуролог Юваль Харари выступил в New York Times с обращением ко всем людям доброй воли: «В “Терминаторе” роботы бегают по улицам и стреляют в людей. “Матрица” предполагала, что для получения полного контроля над человеческим обществом ИИ должен напрямую подключить наш мозг к компьютерной сети. Но на самом деле, овладев языком, ИИ будет иметь все, что ему нужно, чтобы держать нас в мире иллюзий, подобном матрице. Ни в кого не стреляя и не имплантируя чипы в наш мозг. А если потребуется стрельба, ИИ может заставить людей нажать на курок, просто рассказав нам правильную историю».

Действительно, в практическом смысле не так уж важно, говорит искусственный интеллект что-то осмысленное или его речь — это всего лишь хорошо подобранные слова, если такие высказывания результативны. С разговорным ИИ и вправду становится все удобнее работать и приятнее общаться. Ниже мы попробуем объективно посмотреть на прогресс и ограничения ИИ на современном уровне его развития.

Нейросеть предсказывает себя

В научных кругах оживленную дискуссию вызвал препринт международной группы ученых «Предсказание будущего ИИ с ИИ: высококачественное предсказание на экспоненциально растущей сети знаний» (“Predicting the Future of AI with AI: High-quality link prediction in an exponentially growing knowledge network”), в котором описывались итоги эксперимента по использованию искусственного интеллекта для предсказания собственного будущего. Исследователи «скормили» 10 разным статистическим и нейросетевым моделям (в том числе предыдущей версии самой большой разговорной нейросетевой модели GPT-3) около 100 тыс. научных статей об ИИ за прошлые десятилетия — с 1991 года, получили машинный прогноз на ближайшие годы и сравнили результаты с реальностью. Выяснилось, что искусственный интеллект выдал результат с точностью 99%.

Будущее, которое рассчитал ИИ, было представлено в форме новых связей между научными категориями и темами научных работ. Например, если раньше ни в одной работе не встречалось понятий «предсказание погоды» и «генеративная нейросеть», а сейчас они появились, то это и есть свидетельство развития науки об искусственном интеллекте — новая тема. Именно такие пересечения научных тематик предсказал ИИ. Это не просто тест возможностей искусственного интеллекта — это очень практичный результат. Дело в том, что ни один ученый не в силах отслеживать весь поток научных работ даже по своей узкой теме, а самое интересное происходит на пересечении разных областей знания. И если нейросеть будет предсказывать самые перспективные направления исследований (не только в области ИИ), это может ускорить прогресс науки и технологий.

Но наилучшие результаты в исследовании показали не нейросети, которые выполняли задачи полностью самостоятельно, как GPT, а программы, совмещающие возможности нейросети и созданной с помощью «ручного труда» человека классификации научных тем (более 64 тыс. категорий, их связи и иерархии). То есть пара «человек, который концептуализирует изучаемый предмет, плюс нейросеть, которая быстро читает и учится на тысячах текстов» вместе сильнее, чем поодиночке. Нейросети и сами могут строить дерево концепций, карту главных слов выбранной области, но пока нуждаются в помощи оператора в части логичности и исправления ошибок.

Искусственный интеллект удивительно продуктивен во всех сферах, где накоплено большое количество данных, и может сам их порождать — например, предсказывая новые направления исследований, новые лекарства, структуру и свойства белков и многое другое. Но на нынешнем уровне развития нейросеть сталкивается с рядом сложностей. Создатель платформы российского разговорного ИИ DeepPavlov Михаил Бурцев выделяет шесть таких проблем (см. статью «Искусственный интеллект: что он может и чего не может», «Эксперт» № 49 за 2021 год): обучение на малом числе примеров, катастрофическое забывание, рассуждения, здравый смысл, объяснимость и целенаправленность. Все эти трудности не выглядят принципиально непреодолимыми; по крайней мере, ученые и разработчики над этим увлеченно думают. Часть проблем постепенно решается в мультимодальных моделях: например, когда разговорный ИИ соединяется с картиночным, недостаток больших данных компенсируется за счет концепций, которые картиночный ИИ берет у языкового, — в итоге нейросеть сможет нарисовать даже то, о чем не знает.

Авторы работы о предсказании будущего ИИ говорят о путях развития, в том числе о необходимости создания моделей, которые будут сами строить дерево концепций — не просто соединять известные концепции, но и предлагать новые, а также понимать и обобщать знание, когда оно не укладывается в известные категории и термины.

Будущее людей и машин

Но возможно ли, что нейросети не только сумеют увидеть логику развития научной мысли, но и смогут прогнозировать будущее человечества в широком смысле — в области политики и экономики? Этот вопрос мы обсудили с заведующим кафедрой вычислительной техники НГТУ НЭТИ, экспертом Новосибирского представительства центра компетенций Национальной технологической инициативы (НТИ) «Технологии доверенного взаимодействия» Александром Якименко.

Заведующий кафедрой вычислительной техники НГТУ Александр Якименко

— Начнем, наверное, с главного: способен ли искусственный интеллект предсказать какие-либо события?

— В теории — да, способен. На практике все гораздо сложнее. ИИ не то чтобы дает точный прогноз — он ищет в ретроспективе за предшествующие 20–50 лет последовательности, которые приводят к определенным результатам. Например, если дневная температура весной становится выше плюс пяти градусов Цельсия, снег начинает активно таять и уровень воды в реке поднимается. Провалы в мощности станка способствуют увеличению процента брака и выходу оборудования из строя. Значит, рост объема брака может указывать на просадку в мощности и скорую поломку станка, а зафиксированная просадка по мощности помогает вовремя определить бракованную продукцию и предотвратить поломку оборудования. Но для таких прогнозов ИИ необходимы системы сбора и хранения данных. Если мы говорим о перспективе, скажем, в два-три года, то информация потребуется минимум за 20 лет.

— А чем это вызвано?

— Есть несколько причин. Во-первых, стоимость таких систем. Во-вторых, мир, который стремительно меняется. Возможно, процессы годичной давности уже никогда не повторятся, соответственно, система не сможет найти паттерны, которые приведут к наступлению события. В-третьих, всеобъемлющая цифровизация только наступает, и нужной ретроспективы данных у нас попросту нет. Поэтому на предыдущий вопрос можно ответить и так: «Да, ИИ способен предсказывать будущее, но стоит ли это вложенных средств?»

— А как насчет менее долгосрочных прогнозов?

— Возьмем годовой цикл — там речь может идти о климатических катаклизмах или сезонных колебаниях погоды (например, ИИ может заранее предсказать наводнение или обильный снегопад). Еще больше практических приложений в краткосрочном прогнозировании: это и упомянутые станки, и другие технические процессы на производстве. Сюда же можно отнести и прогнозирование покупательной способности или спроса на конкретный вид продукции. Вариантов много. Поэтому сейчас все более популярной становится профессия аналитика данных (data scientist), без которых невозможно построение адекватной модели для любого прогноза. И конечно, программисты — без них совсем никуда.

— Чем отличаются старые и новые ИИ?

— Все новое — это хорошо забытое старое, а в данном случае не забытое, а отложенное. Самые первые гипотезы и идеи, касающиеся искусственного интеллекта, выдвигались еще в 1940-х годах. Но их реализация на вычислительных устройствах того времени была попросту невозможна, поэтому многие теории воспринимались как сказки. В 1990-х годах, когда вычислительная техника уже была способна хранить большие объемы информации и обрабатывать их в относительно короткие сроки, об этих идеях вспомнили и начали воплощать в жизнь. Разумеется, новые алгоритмы тоже появляются. Их принципиальное отличие — в возможности параллельной обработки событий, что существенно повышает скорость работы и точность прогноза.

— Где они используются в настоящий момент?

— Сферы применения таких технологий обширны: социальная (чат-боты, виртуальные помощники, рекомендательные системы), экономическая (инвестиционные прогнозы, скачки курсов валют, покупательная способность, сезонный спрос), климатическая (прогноз погоды, стихийных бедствий, урожайности) и другие. Например, сейчас очень распространены сервисы, которые на основе действий пользователя в интернете (запросы в браузере, время фокусировки на определенном контенте, досматривание до конца) дают рекомендации, какие товары и услуги стоит ему предложить. Эффективность таких систем достаточно высока даже несмотря на то, что на основе прогнозов совершается менее 10 процентов покупок.

— Можно поподробнее насчет экономики?

— Одна из популярных разработок — инструмент прогнозирования котировок акций, который позволяет зарабатывать на разнице в их цене. Пока сервис еще очень сырой, но при сумме вложений 30–50 тысяч рублей в стабильной обстановке позволяет получать до 3000 рублей в месяц. Однако во время глобальных мировых событий нейросетям верить нельзя: такие происшествия, как правило, единичны, и обучить ИИ на них практически невозможно. Зато рутинная однообразная работа уже сейчас отдана на откуп искусственному интеллекту: это позволяет высвободить большие человеческие ресурсы. Постепенно класс задач, которые будет решать ИИ, вырастет, но нестандартными, неповторяющимися кейсами все равно придется заниматься специалистам из крови и плоти.

— Какие положительные и отрицательные стороны искусственного интеллекта можно еще выделить?

— Хорошо обученный ИИ способен замечать такие зависимости, которые человек никогда не обнаружит. К сожалению, это не только плюс, но и минус, особенно если речь идет о безопасности: нейросеть можно натренировать на поиск уязвимостей, лазеек в нормативной документации, способов обмана. Как следствие, мы получаем бесконечное соревнование добра и зла: одни совершенствуют защиту, другие — нападение. ИИ просто инструмент, а в какие руки он попадет, уже другой вопрос.

— А на основе каких баз данных ИИ вообще может делать какие-либо предсказания?

— Искусственный интеллект обрабатывает связанную с событием информацию, именно поэтому получить прогноз события, которого ранее не происходило, невозможно. Процесс составления прогноза — это, по сути, определение наиболее вероятного исхода. В зависимости от алгоритма в программу могут вводиться случайные величины, которые не дают ИИ все время приходить к одному и тому же решению (в математике это называется локальным экстремумом). Отсюда следует, что чем чище и достовернее данные для нейросети, тем адекватнее и точнее будет ее прогноз.

Идеальный вариант — если данные собираются без вмешательства человека: определенные события фиксируются автоматически с заданной частотой (кстати, частота тоже влияет на точность прогноза). Но, собирая информацию, к примеру, раз в сутки, практически нереально спрогнозировать событие длительностью, скажем, один час. Есть такой фильм с Беном Аффлеком в главной роли — «Час расплаты». В нем, на мой взгляд, очень хорошо показаны последствия использования ИИ для получения предсказаний. Знать будущее нужно лишь для того, чтобы не совершать ошибки в настоящем.

— Расскажите, пожалуйста, о таких разработках у нас и за рубежом.

— Отечественных и мировых прогностических нейросетей довольно много. В основном это проекты крупных ITкомпаний: «Яндекса», Google, Amazon и других, которые могут себе позволить содержать огромные вычислительные ресурсы для создания инфраструктуры ИИ. Но чаще используются мелкие решения, нацеленные на конкретную задачу: например, информация об уровне паводковых вод выше по течению от прогнозируемого места позволяет с точностью до часа предсказать, когда придет высокая вода. Такая система используется на Новосибирской ГЭС. Благодаря ей дачи, которые расположены на берегах Оби, в последнее время затапливает значительно реже, а суда могут не бояться обмеления русла. Еще одна система, тоже связанная с погодными условиями, позволяет прогнозировать вспышки тех или иных инфекционных заболеваний. С виртуальными помощниками сталкивались практически все: они защищают вас от назойливых звонков, могут ответить, когда вы заняты, и тому подобное. У таких разработок высока социальная ценность, поскольку их можно применять в сфере образования и при сопровождении людей с ограничениями по здоровью.

Человечество может выдохнуть?

— Сколько, на ваш взгляд, понадобится времени для обучения ИИ?

— Есть очень хорошая фраза: «В начале ты полжизни учишься, потом полжизни переучиваешься». Чем больше информации, тем она разнороднее; чем долгосрочнее необходим прогноз, чем больше и сложнее зависимости между данными, тем больше требуется времени на обучение нейросети. Стоит поменять всего одну вводную, и процесс обучения придется начинать сначала. Сейчас уже появляются подходы, которые позволяют искусственному интеллекту работать и обучаться одновременно, но такая модель накладывает существенные ограничения на подаваемые на вход данные, иначе можно очень сильно потерять в точности прогноза.

— Есть ли смысл доверять таким технологиям, если предсказание будущего все же станет реальностью?

— В фильме «Эффект бабочки» показано, сколь значимым может быть изменение даже крохотной детали. Чтобы дать точный прогноз, необходимо, чтобы каждое наше действие было заранее известно, а ведь предсказать поведение человека или группы людей практически невозможно. Природу тоже необходимо учитывать. Но, с другой стороны, еще сто лет назад никто и представить себе не мог сотовые телефоны или автомобили, едущие со скоростью более трехсот километров в час. С развитием технологий и открытием новых законов у человечества появляется все больше возможностей.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Завтрак у Феликсова Завтрак у Феликсова

В чем секрет успешного проекта на стыке ретейла и общепита?

Эксперт
Шесть причин посмотреть мини-сериал «Михаил Горшенёв. Легенда о Короле и Шуте» Шесть причин посмотреть мини-сериал «Михаил Горшенёв. Легенда о Короле и Шуте»

Документальное кино, которое поможет понять, кто такой Михаил Горшенев

Maxim
Рецессия в подарок Рецессия в подарок

Попытка сдержать инфляцию в ЕС и Японии может привести к рецессии

Эксперт
Что нужно знать о гримере Нике Дадмене, создавшем мастера Йоду, Мумию и гиппогрифов из «Гарри Поттера» Что нужно знать о гримере Нике Дадмене, создавшем мастера Йоду, Мумию и гиппогрифов из «Гарри Поттера»

История одного из лучших гримеров кинематографа Ника Дадмена

Правила жизни
Деревянный монолит вместо бетонного Деревянный монолит вместо бетонного

АФК «Система» выводит на рынок девелопмента многоэтажные деревянные дома

Эксперт
По-хорошему или по-плохому: 7 способов закончить дружбу — какие наиболее популярны По-хорошему или по-плохому: 7 способов закончить дружбу — какие наиболее популярны

Что же делать, когда отношения с другом или подругой начали тяготить?

Psychologies
Как санкции приближают образ будущего Как санкции приближают образ будущего

Экономические потрясения не отменяют стратегии успешных компаний

Эксперт
Не для красоты: почему раньше мужчины носили пышные парики Не для красоты: почему раньше мужчины носили пышные парики

Целый век аллонжи были в моде, но надевали их далеко не для сокрытия лысины...

ТехИнсайдер
О чем говорят дипломаты, когда стреляют пушки О чем говорят дипломаты, когда стреляют пушки

Почему сделка по Украине в формате «Минска-3» реальна впервые за семь лет

Эксперт
Критика, неуверенность и недоверие: 7 знаков, что отношения повернули не туда, — проверьте себя Критика, неуверенность и недоверие: 7 знаков, что отношения повернули не туда, — проверьте себя

Как распознать знаки, указывающие на то, что ваша дорога вместе не будет ровной?

Psychologies
Рестайлинг Jeep Wrangler. Чуть больше версий и возможностей Рестайлинг Jeep Wrangler. Чуть больше версий и возможностей

Что нового в рейстайлинге Jeep Wrangler

4x4 Club
26 советов отца, которые помогли мне найти любовь 26 советов отца, которые помогли мне найти любовь

Журналистка собрала советы отца, которые помогли ей встретить свою любовь

Psychologies
Что будет, если перестать чистить зубы Что будет, если перестать чистить зубы

Как часто и правильно нужно чистить зубы?

ТехИнсайдер
Девять фактов о самом крепком и самом странном алкоголе в мире — «китайской водке» — байцзю Девять фактов о самом крепком и самом странном алкоголе в мире — «китайской водке» — байцзю

Как производится байцзю — главный дистиллят Поднебесной?

Maxim
«Хорошие, мимо!»: почему женщины любят «плохишей» «Хорошие, мимо!»: почему женщины любят «плохишей»

Почему многие женщины отвергают замечательных партнеров?

Psychologies
ИИ ищет законы природы на основе известных теорий и новых данных. Так работают люди ИИ ищет законы природы на основе известных теорий и новых данных. Так работают люди

Ученые надеются, что скоро ИИ найдет законы, которых они не знают

ТехИнсайдер
Автовладельцам на заметку: как очистить колесные диски автомобиля Автовладельцам на заметку: как очистить колесные диски автомобиля

Чтобы как следует очистить колесные диски, потребуется время

ТехИнсайдер
17 cамых смешных комедийных сериалов 2010–2023 годов 17 cамых смешных комедийных сериалов 2010–2023 годов

Если какая-то из данных комедий не рассмешит, это не повод впадать в отчаяние

Maxim
Брэд + Гвинет: классные пары из 90-х, о существовании которых ты могла забыть Брэд + Гвинет: классные пары из 90-х, о существовании которых ты могла забыть

Пары, которые были на первых полосах в 1990-х

VOICE
Выпить или надеть: где, когда и как делали одежду из коровьего молока и почему перестали Выпить или надеть: где, когда и как делали одежду из коровьего молока и почему перестали

В XX веке в Италии шили одежду из тканей, изготовленных из цельного молока

VOICE
Нужен ли России цифровой кодекс и от чего он защитит Нужен ли России цифровой кодекс и от чего он защитит

Эксперты опасаются формирующегося глобального надзорного капитализма

Эксперт
Где на самом деле похоронен Александр Великий: посмертная тайна легендарного полководца Где на самом деле похоронен Александр Великий: посмертная тайна легендарного полководца

Ученые пытаются разобраться, где мог быть похоронен Александр Македонский

ТехИнсайдер
Эхо Большого взрыва Эхо Большого взрыва

Мы уже пережили бум метавселенных или все только начинается?

РБК
«Искатели закономерностей». Как аутизм способствует человеческой изобретательности «Искатели закономерностей». Как аутизм способствует человеческой изобретательности

Гиперсистематизирующий склад ума позволяет экспериментировать с закономерностями

N+1
Хорошее совмещение Хорошее совмещение

Комплекс упражнений, который легко делать прямо во время уборки

Лиза
По техническим причинам: почему продажи электроники перетекают в маркетплейсы По техническим причинам: почему продажи электроники перетекают в маркетплейсы

1/4 всей электроники и бытовой техники в 2022 россияне купили на маркетплейсах

Forbes
«Наша задача — создавать выгодные и простые сервисы для клиентов «Наша задача — создавать выгодные и простые сервисы для клиентов

Какие технологии нужны розничным клиентам?

Деньги
Не могу избавиться от эмоциональной зависимости, как быть? Отвечает психолог Не могу избавиться от эмоциональной зависимости, как быть? Отвечает психолог

Эмоциональная зависимость случается не только в любовных отношениях

VOICE
Бери ниже Бери ниже

Как математики сдвинули с мертвой точки диагональное число Рамсея

N+1
Это нейробаза Это нейробаза

Кратко объясняем ключевые термины из области ИИ

N+1
Открыть в приложении