Ограничены ли нейросети в своих возможностях?

ЭкспертHi-Tech

Может ли искусственный интеллект предсказывать будущее

Нейросети ограничены потребностью в больших данных, способностями к концептуализации и непредсказуемостью людей

Варвара Гузий, Виталий Лейбин

Искусственный интеллект поможет предсказывать вероятное будущее, но не избавит людей от необходимости осознавать себя и делать свой выбор

По миру стремительно распространяется волна радостных и одновременно панических публикаций относительно возможностей искусственного интеллекта. Причиной столь бурной реакции СМИ стал запуск нейросетевой языковой модели ChatGPT-4, которая заметно превосходит все предыдущие версии. ChatGPT, конечно, не разум, подобный человеческому, — это именно языковая, разговорная, хотя и очень большая мультимодальная модель. Бота обучали на текстах естественных человеческих языков (и некоторых формальных, в том числе математики и программирования), и теперь на основе этого опыта он может почти моментально генерировать сообщения разного качества и разной степени осмысленности.

Новый инструмент оказался не только отличным помощником в написании рефератов и решении несложных задач, но и удивительно интересным собеседником. Как результат, в мире развернулась дискуссия о возможностях «сильного» («настоящего», «общего») ИИ. Так, группа исследователей из Microsoft выложила в открытый доступ статью «Проблески общего искусственного интеллекта: первые эксперименты с GPT-4»), в которой ученые утверждают, что чат-бот демонстрировал признаки способности к абстрагированию, понимание человеческих эмоций и многое другое.

Известный футуролог Юваль Харари выступил в New York Times с обращением ко всем людям доброй воли: «В “Терминаторе” роботы бегают по улицам и стреляют в людей. “Матрица” предполагала, что для получения полного контроля над человеческим обществом ИИ должен напрямую подключить наш мозг к компьютерной сети. Но на самом деле, овладев языком, ИИ будет иметь все, что ему нужно, чтобы держать нас в мире иллюзий, подобном матрице. Ни в кого не стреляя и не имплантируя чипы в наш мозг. А если потребуется стрельба, ИИ может заставить людей нажать на курок, просто рассказав нам правильную историю».

Действительно, в практическом смысле не так уж важно, говорит искусственный интеллект что-то осмысленное или его речь — это всего лишь хорошо подобранные слова, если такие высказывания результативны. С разговорным ИИ и вправду становится все удобнее работать и приятнее общаться. Ниже мы попробуем объективно посмотреть на прогресс и ограничения ИИ на современном уровне его развития.

Нейросеть предсказывает себя

В научных кругах оживленную дискуссию вызвал препринт международной группы ученых «Предсказание будущего ИИ с ИИ: высококачественное предсказание на экспоненциально растущей сети знаний» (“Predicting the Future of AI with AI: High-quality link prediction in an exponentially growing knowledge network”), в котором описывались итоги эксперимента по использованию искусственного интеллекта для предсказания собственного будущего. Исследователи «скормили» 10 разным статистическим и нейросетевым моделям (в том числе предыдущей версии самой большой разговорной нейросетевой модели GPT-3) около 100 тыс. научных статей об ИИ за прошлые десятилетия — с 1991 года, получили машинный прогноз на ближайшие годы и сравнили результаты с реальностью. Выяснилось, что искусственный интеллект выдал результат с точностью 99%.

Будущее, которое рассчитал ИИ, было представлено в форме новых связей между научными категориями и темами научных работ. Например, если раньше ни в одной работе не встречалось понятий «предсказание погоды» и «генеративная нейросеть», а сейчас они появились, то это и есть свидетельство развития науки об искусственном интеллекте — новая тема. Именно такие пересечения научных тематик предсказал ИИ. Это не просто тест возможностей искусственного интеллекта — это очень практичный результат. Дело в том, что ни один ученый не в силах отслеживать весь поток научных работ даже по своей узкой теме, а самое интересное происходит на пересечении разных областей знания. И если нейросеть будет предсказывать самые перспективные направления исследований (не только в области ИИ), это может ускорить прогресс науки и технологий.

Но наилучшие результаты в исследовании показали не нейросети, которые выполняли задачи полностью самостоятельно, как GPT, а программы, совмещающие возможности нейросети и созданной с помощью «ручного труда» человека классификации научных тем (более 64 тыс. категорий, их связи и иерархии). То есть пара «человек, который концептуализирует изучаемый предмет, плюс нейросеть, которая быстро читает и учится на тысячах текстов» вместе сильнее, чем поодиночке. Нейросети и сами могут строить дерево концепций, карту главных слов выбранной области, но пока нуждаются в помощи оператора в части логичности и исправления ошибок.

Искусственный интеллект удивительно продуктивен во всех сферах, где накоплено большое количество данных, и может сам их порождать — например, предсказывая новые направления исследований, новые лекарства, структуру и свойства белков и многое другое. Но на нынешнем уровне развития нейросеть сталкивается с рядом сложностей. Создатель платформы российского разговорного ИИ DeepPavlov Михаил Бурцев выделяет шесть таких проблем (см. статью «Искусственный интеллект: что он может и чего не может», «Эксперт» № 49 за 2021 год): обучение на малом числе примеров, катастрофическое забывание, рассуждения, здравый смысл, объяснимость и целенаправленность. Все эти трудности не выглядят принципиально непреодолимыми; по крайней мере, ученые и разработчики над этим увлеченно думают. Часть проблем постепенно решается в мультимодальных моделях: например, когда разговорный ИИ соединяется с картиночным, недостаток больших данных компенсируется за счет концепций, которые картиночный ИИ берет у языкового, — в итоге нейросеть сможет нарисовать даже то, о чем не знает.

Авторы работы о предсказании будущего ИИ говорят о путях развития, в том числе о необходимости создания моделей, которые будут сами строить дерево концепций — не просто соединять известные концепции, но и предлагать новые, а также понимать и обобщать знание, когда оно не укладывается в известные категории и термины.

Будущее людей и машин

Но возможно ли, что нейросети не только сумеют увидеть логику развития научной мысли, но и смогут прогнозировать будущее человечества в широком смысле — в области политики и экономики? Этот вопрос мы обсудили с заведующим кафедрой вычислительной техники НГТУ НЭТИ, экспертом Новосибирского представительства центра компетенций Национальной технологической инициативы (НТИ) «Технологии доверенного взаимодействия» Александром Якименко.

Заведующий кафедрой вычислительной техники НГТУ Александр Якименко

— Начнем, наверное, с главного: способен ли искусственный интеллект предсказать какие-либо события?

— В теории — да, способен. На практике все гораздо сложнее. ИИ не то чтобы дает точный прогноз — он ищет в ретроспективе за предшествующие 20–50 лет последовательности, которые приводят к определенным результатам. Например, если дневная температура весной становится выше плюс пяти градусов Цельсия, снег начинает активно таять и уровень воды в реке поднимается. Провалы в мощности станка способствуют увеличению процента брака и выходу оборудования из строя. Значит, рост объема брака может указывать на просадку в мощности и скорую поломку станка, а зафиксированная просадка по мощности помогает вовремя определить бракованную продукцию и предотвратить поломку оборудования. Но для таких прогнозов ИИ необходимы системы сбора и хранения данных. Если мы говорим о перспективе, скажем, в два-три года, то информация потребуется минимум за 20 лет.

— А чем это вызвано?

— Есть несколько причин. Во-первых, стоимость таких систем. Во-вторых, мир, который стремительно меняется. Возможно, процессы годичной давности уже никогда не повторятся, соответственно, система не сможет найти паттерны, которые приведут к наступлению события. В-третьих, всеобъемлющая цифровизация только наступает, и нужной ретроспективы данных у нас попросту нет. Поэтому на предыдущий вопрос можно ответить и так: «Да, ИИ способен предсказывать будущее, но стоит ли это вложенных средств?»

— А как насчет менее долгосрочных прогнозов?

— Возьмем годовой цикл — там речь может идти о климатических катаклизмах или сезонных колебаниях погоды (например, ИИ может заранее предсказать наводнение или обильный снегопад). Еще больше практических приложений в краткосрочном прогнозировании: это и упомянутые станки, и другие технические процессы на производстве. Сюда же можно отнести и прогнозирование покупательной способности или спроса на конкретный вид продукции. Вариантов много. Поэтому сейчас все более популярной становится профессия аналитика данных (data scientist), без которых невозможно построение адекватной модели для любого прогноза. И конечно, программисты — без них совсем никуда.

— Чем отличаются старые и новые ИИ?

— Все новое — это хорошо забытое старое, а в данном случае не забытое, а отложенное. Самые первые гипотезы и идеи, касающиеся искусственного интеллекта, выдвигались еще в 1940-х годах. Но их реализация на вычислительных устройствах того времени была попросту невозможна, поэтому многие теории воспринимались как сказки. В 1990-х годах, когда вычислительная техника уже была способна хранить большие объемы информации и обрабатывать их в относительно короткие сроки, об этих идеях вспомнили и начали воплощать в жизнь. Разумеется, новые алгоритмы тоже появляются. Их принципиальное отличие — в возможности параллельной обработки событий, что существенно повышает скорость работы и точность прогноза.

— Где они используются в настоящий момент?

— Сферы применения таких технологий обширны: социальная (чат-боты, виртуальные помощники, рекомендательные системы), экономическая (инвестиционные прогнозы, скачки курсов валют, покупательная способность, сезонный спрос), климатическая (прогноз погоды, стихийных бедствий, урожайности) и другие. Например, сейчас очень распространены сервисы, которые на основе действий пользователя в интернете (запросы в браузере, время фокусировки на определенном контенте, досматривание до конца) дают рекомендации, какие товары и услуги стоит ему предложить. Эффективность таких систем достаточно высока даже несмотря на то, что на основе прогнозов совершается менее 10 процентов покупок.

— Можно поподробнее насчет экономики?

— Одна из популярных разработок — инструмент прогнозирования котировок акций, который позволяет зарабатывать на разнице в их цене. Пока сервис еще очень сырой, но при сумме вложений 30–50 тысяч рублей в стабильной обстановке позволяет получать до 3000 рублей в месяц. Однако во время глобальных мировых событий нейросетям верить нельзя: такие происшествия, как правило, единичны, и обучить ИИ на них практически невозможно. Зато рутинная однообразная работа уже сейчас отдана на откуп искусственному интеллекту: это позволяет высвободить большие человеческие ресурсы. Постепенно класс задач, которые будет решать ИИ, вырастет, но нестандартными, неповторяющимися кейсами все равно придется заниматься специалистам из крови и плоти.

— Какие положительные и отрицательные стороны искусственного интеллекта можно еще выделить?

— Хорошо обученный ИИ способен замечать такие зависимости, которые человек никогда не обнаружит. К сожалению, это не только плюс, но и минус, особенно если речь идет о безопасности: нейросеть можно натренировать на поиск уязвимостей, лазеек в нормативной документации, способов обмана. Как следствие, мы получаем бесконечное соревнование добра и зла: одни совершенствуют защиту, другие — нападение. ИИ просто инструмент, а в какие руки он попадет, уже другой вопрос.

— А на основе каких баз данных ИИ вообще может делать какие-либо предсказания?

— Искусственный интеллект обрабатывает связанную с событием информацию, именно поэтому получить прогноз события, которого ранее не происходило, невозможно. Процесс составления прогноза — это, по сути, определение наиболее вероятного исхода. В зависимости от алгоритма в программу могут вводиться случайные величины, которые не дают ИИ все время приходить к одному и тому же решению (в математике это называется локальным экстремумом). Отсюда следует, что чем чище и достовернее данные для нейросети, тем адекватнее и точнее будет ее прогноз.

Идеальный вариант — если данные собираются без вмешательства человека: определенные события фиксируются автоматически с заданной частотой (кстати, частота тоже влияет на точность прогноза). Но, собирая информацию, к примеру, раз в сутки, практически нереально спрогнозировать событие длительностью, скажем, один час. Есть такой фильм с Беном Аффлеком в главной роли — «Час расплаты». В нем, на мой взгляд, очень хорошо показаны последствия использования ИИ для получения предсказаний. Знать будущее нужно лишь для того, чтобы не совершать ошибки в настоящем.

— Расскажите, пожалуйста, о таких разработках у нас и за рубежом.

— Отечественных и мировых прогностических нейросетей довольно много. В основном это проекты крупных ITкомпаний: «Яндекса», Google, Amazon и других, которые могут себе позволить содержать огромные вычислительные ресурсы для создания инфраструктуры ИИ. Но чаще используются мелкие решения, нацеленные на конкретную задачу: например, информация об уровне паводковых вод выше по течению от прогнозируемого места позволяет с точностью до часа предсказать, когда придет высокая вода. Такая система используется на Новосибирской ГЭС. Благодаря ей дачи, которые расположены на берегах Оби, в последнее время затапливает значительно реже, а суда могут не бояться обмеления русла. Еще одна система, тоже связанная с погодными условиями, позволяет прогнозировать вспышки тех или иных инфекционных заболеваний. С виртуальными помощниками сталкивались практически все: они защищают вас от назойливых звонков, могут ответить, когда вы заняты, и тому подобное. У таких разработок высока социальная ценность, поскольку их можно применять в сфере образования и при сопровождении людей с ограничениями по здоровью.

Человечество может выдохнуть?

— Сколько, на ваш взгляд, понадобится времени для обучения ИИ?

— Есть очень хорошая фраза: «В начале ты полжизни учишься, потом полжизни переучиваешься». Чем больше информации, тем она разнороднее; чем долгосрочнее необходим прогноз, чем больше и сложнее зависимости между данными, тем больше требуется времени на обучение нейросети. Стоит поменять всего одну вводную, и процесс обучения придется начинать сначала. Сейчас уже появляются подходы, которые позволяют искусственному интеллекту работать и обучаться одновременно, но такая модель накладывает существенные ограничения на подаваемые на вход данные, иначе можно очень сильно потерять в точности прогноза.

— Есть ли смысл доверять таким технологиям, если предсказание будущего все же станет реальностью?

— В фильме «Эффект бабочки» показано, сколь значимым может быть изменение даже крохотной детали. Чтобы дать точный прогноз, необходимо, чтобы каждое наше действие было заранее известно, а ведь предсказать поведение человека или группы людей практически невозможно. Природу тоже необходимо учитывать. Но, с другой стороны, еще сто лет назад никто и представить себе не мог сотовые телефоны или автомобили, едущие со скоростью более трехсот километров в час. С развитием технологий и открытием новых законов у человечества появляется все больше возможностей.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Сто цветов китайского автопрома Сто цветов китайского автопрома

Автомобильная промышленность КНР готова преподать урок конкурентам

Эксперт
Как ускорить борьбу с табакокурением Как ускорить борьбу с табакокурением

Почему нужно различать потребление никотина и затяжку сигаретой

Наука
Закат Европы Закат Европы

Старый Свет лишается дешевой энергии — основы своей промышленности

Эксперт
Почему может быть опасно носить чужие украшения? Почему может быть опасно носить чужие украшения?

Есть определённые нюансы ношения украшений, которые ранее принадлежали другим

VOICE
Деревянный монолит вместо бетонного Деревянный монолит вместо бетонного

АФК «Система» выводит на рынок девелопмента многоэтажные деревянные дома

Эксперт
«Сумерки», только лучше? Что мы знаем о новом сериале по вампирской саге Стефани Майер «Сумерки», только лучше? Что мы знаем о новом сериале по вампирской саге Стефани Майер

Неужели мы снова увидим красивую историю любви Эдварда и Беллы?

VOICE
Палаццо Гергиева, дом Юдашкина и Машков-билдинг Палаццо Гергиева, дом Юдашкина и Машков-билдинг

В Ватутинках, реализован уникальный девелоперский проект Russian Design District

Эксперт
Витамин D: почему он так важен и как не пропустить его дефицит — советы нутрициолога Витамин D: почему он так важен и как не пропустить его дефицит — советы нутрициолога

Все, что вам необходимо знать о витамине D

Psychologies
Вакуумный корабль Вакуумный корабль

Отличным грузовым транспортом могут стать дирижабли, наполненные вакуумом

ТехИнсайдер
Пчелиная хватка Пчелиная хватка

«Рой»: триллер-пародия на все жанры поп-культуры разом

Weekend
Дело в фокусе: какими уловками создатели рекламы внушают нам идеалы красоты Дело в фокусе: какими уловками создатели рекламы внушают нам идеалы красоты

Как работает визуальный обман в рекламе?

Forbes
Как выбрать сковороду и почему готовить всё только на одной посуде — плохая идея Как выбрать сковороду и почему готовить всё только на одной посуде — плохая идея

Ориентируясь на эти подсказки, вы сможете выбрать идеальную сковородку

ТехИнсайдер
Государство закручивает гайки Государство закручивает гайки

Как защитить граждан и критически важную информационную инфраструктуру?

Эксперт
Отдельные люди: продолжение истории побега Александра Отдельные люди: продолжение истории побега Александра

История женщины, от которой сбежал муж

СНОБ
Не повернуть головы Не повернуть головы

Почему болит шея и как предотвратить появление этой боли?

Лиза
Секрет пашота: как яйцо бенедикт стало одним из самых популярных блюд в мире Секрет пашота: как яйцо бенедикт стало одним из самых популярных блюд в мире

Разбираемся в феномене яйца бенедикт

Forbes
Как работает градусник: почему не меняет показания после измерения и что содержится внутри, если не ртуть? Как работает градусник: почему не меняет показания после измерения и что содержится внутри, если не ртуть?

Что содержится внутри градусника, если не ртуть?

ТехИнсайдер
«Рак дурак, а я — нет»: как правильно бояться онкологии «Рак дурак, а я — нет»: как правильно бояться онкологии

Как сохранять онконастороженность, не впадая в навязчивый страх заболеть раком?

СНОБ
Перестать читать мысли и концентрироваться на недостатках: 5 способов спасти отношения — советы коуча Перестать читать мысли и концентрироваться на недостатках: 5 способов спасти отношения — советы коуча

Как спасти перспективные отношения от самих себя

Psychologies
Красный маркер обиды Красный маркер обиды

Зачем нужна обида? И как с ней жить?

Здоровье
У выращеного в пробирке мяса появится жир, улучшающий вкус и текстуру У выращеного в пробирке мяса появится жир, улучшающий вкус и текстуру

Ученые разработали способ выращивания жира, похожего на жир животных

ТехИнсайдер
История субкомпактов: 25 лет Suzuki Jimny III поколения и 53 – внедорожникам марки История субкомпактов: 25 лет Suzuki Jimny III поколения и 53 – внедорожникам марки

Полувековая внедорожная история японской компании Suzuki

4x4 Club
Самая популярная вещь в гардеробе: 5 идей, что можно сделать из старых джинсов Самая популярная вещь в гардеробе: 5 идей, что можно сделать из старых джинсов

Порвалась любимая пара джинсов? Им можно подарить вторую жизнь!

ТехИнсайдер
«Мурзилки Live»: Трое на одной волне «Мурзилки Live»: Трое на одной волне

Брагин, Гордеева и Захар - знаменитые поющие ведущие шоу «Мурзилки Live»

Караван историй
Падение Голиафа: каким будет финал Международной космической станции Падение Голиафа: каким будет финал Международной космической станции

Как убрать из космоса самый большой в истории космический аппарат?

Наука
Чем полезна корица и поможет ли она при похудении Чем полезна корица и поможет ли она при похудении

Разбираемся, в чем польза корицы

РБК
Держаться корней Держаться корней

Людей восхищают деревья-долгожители, растущие на Земле сотни и тысячи лет

Вокруг света
Шамиль Идиатуллин, «До февраля» — триллер о серийном убийце Шамиль Идиатуллин, «До февраля» — триллер о серийном убийце

Глава из романа Шамиля Идиатуллина «До февраля»

СНОБ
Михаил Светин. Грустный клоун Михаил Светин. Грустный клоун

Хочу быть артистом, хочу быть известным, Боженька, помоги

Коллекция. Караван историй
Из чего складывается конструктивизм Из чего складывается конструктивизм

Конструктивизм представил миру множество новаторских идей

Правила жизни
Открыть в приложении