Третье поколение алгоритма OpenAI научилось выполнять текстовые задания по нескольким примерам
Исследователи из OpenAI представили GPT-3 — алгоритм, который может выполнять разные задания по написанию текста на основе всего нескольких примеров. В новой версии используется та же архитектура, что и в предыдущем алгоритме GPT-2, однако разработчики увеличили количество используемых в модели параметров до 175 миллиардов, обучив модель на 570 гигабайтах текста. В итоге GPT-3 может отвечать на вопросы по прочитанному тексту, писать стихи, разгадывать анаграммы, решать простые арифметические примеры и даже переводить — и для этого ей нужно немного (от 10 до 100) примеров того, как именно это делать. Подробное описание работы алгоритма исследователи выложили на arXiv.org.
Важное ограничение современных алгоритмов NLP (natural language processing) — зависимость от контекста: многие алгоритмы могут выполнять только те задачи, на выполнение которых они обучены. Например, если необходим алгоритм, который пишет стихи, его нужно обучить на большом корпусе стихов — желательно, в том стиле, в котором должно быть итоговое. Если обучение пройдет успешно, алгоритм сможет произвести что-то похожее на стих, но вот ответить на вопрос или составить список слов для кроссворда он уже не сможет.
То, сколько данных понадобится для обучения NLP-алгоритма конкретной задаче, напрямую зависит от того, как алгоритм предобучен: если системе хорошо известны все требования грамматики языка, а генерировать осмысленные фразы он умеет изначально, то конкретно для обучения какой-то отдельной задаче нужно не так много данных. Задача, поэтому, сводится к тому, чтобы сделать предобученный