Солнце в машине: как ученые сделали еще один шаг к управляемой термоядерной реакции и почему это может изменить мир
В России запустили термоядерный реактор, не имеющий аналогов в мире благодаря сочетанию компактных размеров и высокой мощности. Эксперименты на нем должны проложить путь термоядерной энергетике, способной практически навсегда обеспечить мир дешевой и безопасной энергией, считает научный обозреватель, кандидат физико-математических наук Анатолий Глянцев
18 мая в Национальном исследовательском центре «Курчатовский институт» был запущен термоядерный реактор Т-15МД. Это первая подобная установка, построенная в России за последние 20 лет. Эксперименты на ней станут частью масштабной международной программы, направленной на создание промышленной термоядерной энергетики.
Неисчерпаемый ресурс
Термоядерные реакции — самый впечатляющий источник энергии, опробованный человечеством. В пересчете на килограмм топлива они в несколько раз мощнее, чем деление ядер урана или плутония. Именно это делает водородные бомбы куда более страшным оружием, чем ядерные заряды, разрушившие Хиросиму и Нагасаки. И поэтому же термоядерные электростанции будут куда эффективнее обычных атомных. Удивительно, но при этом они будут еще и гораздо безопаснее для человека и окружающей среды.
Что же происходит в такой установке? Напомним, что атомные ядра состоят из протонов и нейтронов. Проще всего устроено ядро атома водорода: почти всегда оно представляет собой одиночный протон. Однако одно на 6000–7000 ядер водорода, встречающихся в природе, содержит еще и нейтрон. Такая разновидность (изотоп) водорода называется дейтерием. Существует и третий изотоп водорода: тритий. В его ядре один протон и два нейтрона. Тритий, в отличие от дейтерия, радиоактивен и быстро распадается: всего за 12 лет число его ядер уменьшается вдвое. В связи с этим он практически не встречается в природе, но может быть получен искусственно.
В термоядерном реакторе и при взрыве водородной бомбы ядра дейтерия сливаются с ядрами трития. При этом образуются ядра гелия и одиночные нейтроны, а также выделяется энергия, ради которой все и затевается.
В литре самой обычной воды (водопроводной, морской или какой угодно) содержится примерно 0,03 г дейтерия. Если весь этот изотоп использовать в термоядерном реакторе, выделится столько же энергии, как при сжигании 300 л бензина. То есть стакан воды из-под крана эквивалентен полному баку. Дейтерия, содержащегося в Мировом океане, хватило бы, чтобы обеспечить текущие энергетические потребности человечества на миллиарды лет.
Правда, для реакции необходим еще и тритий. Однако его можно получить, облучая нейтронами металл литий. Это не самое дефицитное сырье, чему порукой литий-ионные аккумуляторы, питающие каждый современный гаджет. По расчетам экспертов, подтвержденных и легко извлекаемых запасов лития в месторождениях хватит, чтобы обеспечить человечество термоядерной энергией в течение более чем тысячелетия. Если же извлечь литий из морской воды, его хватит на шесть миллионов лет.
Без Чернобыля
Термоядерная энергетика еще и безопасна с экологической точки зрения. Ни исходные продукты (дейтерий и литий), ни отходы реактора (гелий) не радиоактивны. Правда, радиоактивен тритий, но его можно получать тут же на месте. Достаточно включить литий в оболочку реактора, и свободные нейтроны, образующиеся в термоядерной реакции, будут превращать его в тритий. Другими словами, это опасное вещество не нужно отдельно производить, накапливать и перевозить: оно образуется прямо в реакторе и тут же потребляется.