Как радужная плёнка появляется на разных предметах?

Наука и жизньНаука

Радужные плёнки: наблюдения и опыты

Иван Григорьев (г. Нововоронеж)

Вы, конечно, не раз обращали внимание на радужную окраску предметов, веществ, животных и растений. Примеров множество: переливающиеся цвета некоторых минералов, плёнок масла, «ржавой воды» на водоёмах, мыльных пузырей, трещин во льду, в стекле, цвета побежалости на нагретом металле. В животном мире радужно окрашены пятна и перья павлина, шея сизого голубя. Редким «металлическим отливом» могут похвастаться некоторые бабочки, жуки и мухи. Во всех этих случаях радужные цвета вызваны не красителями, а взаимодействием световых волн — интерференцией в тонких слоях прозрачных веществ, называемых тонкими плёнками. (Интерференция — это взаимное увеличение или уменьшение результирующей амплитуды волн при их наложении друг на друга.)

Попробуем понять, как возникают радужные переливы, и проделать несложные опыты с интерференцией в тонких плёнках.

Современное представление о механизме интерференции в тонкой прозрачной плёнке таково. Когда луч света падает на неё, он делится на две части: одна отражается от внешней поверхности плёнки, другая проникает сквозь её толщу, а затем частично отражается от нижней внутренней поверхности и возвращается обратно. В результате получаются два отражённых от плёнки луча света, накладывающиеся друг на друга. Поскольку они происходят из единого источника, то колебания световых волн в них согласованы. Такие волны называют когерентными. Только в этом случае возможно образование устойчивой интерференционной картины. Второй луч света проходит толщину плёнки дважды и потому «запаздывает» относительно первого луча. Величина запаздывания зависит от толщины плёнки и направления, в котором свет её проходит (угла падения света на плёнку). Когда оба луча встречаются и накладываются друг на друга, происходит взаимодействие световых волн, зависящее от запаздывания второго луча (см. рисунок). На рисунке вверху (a) обе волны точно совпадают в фазах — гребень одной волны совпадает с гребнем другой и впадина с впадиА ной (А). В итоге получившаяся в результате интерференции суммарная волна (RES) усиливается, то есть её амплитуда (размах) будет больше, чем у исходных волн. При равенстве амплитуд исходных волн суммарная волна будет иметь удвоенную амплитуду. Усиление волн произойдёт в случае, когда одна волна опередит другую на целое число длин волн.

На рисунке внизу (b) одна волна опережает другую на половину длины волны, или нечётное число полуволн, при этом фазы противоположны: накладываются гребень одной волны и впадина другой (А). В результате происходит ослабление, гашение волн. При равенстве амплитуд исходных волн гашение будет полным. Понятно, что мы рассмотрели крайние случаи. Возможно и частичное ослабление или частичное усиление волн, когда их фазы не совпадают точно или не прямо противоположны.

Таким образом, тонкая плёнка как бы рассортировывает и выделяет цвета из белого дневного света, усиливая и ослабляя определённые длины волн. Получившийся суммарный цвет отражённого луча света (окраска плёнки) зависит от толщины плёнки и угла падения света на неё. Наиболее насыщенные интерференционные цвета тонких плёнок возникают лишь при толщине, сравнимой с длинами волн видимого света (0,38—0,78 мкм). В толстых плёнках (более нескольких микрометров) их цветная окраска слабая. Для сравнения: толщина волоса около 70—80 мкм, размеры бактерий 0,5—2 мкм, то есть толщина радужных плёнок сопоставима с размером бактерий. Наиболее тонкие плёнки толщиной в несколько нанометров, что сравнимо с размером вирусов, кажутся просто серыми или чёрными. Так выглядят стенки мыльного пузыря незадолго до его разрыва — мыльная плёнка кажется совершенно чёрной.

Казалось бы, в очень тонкой плёнке волны должны усиливаться, однако в действительности происходит гашение волн. Луч отражается от границы «воздух — плёнка» таким образом, что разность пути луча скачком изменяется на половину длины волны. В чрезвычайно тонких плёнках интерференция волн будет определяться только этой разницей, что приводит, как мы уже знаем, к гашению волн.

Рассмотрим несколько примеров интерференции в тонких плёнках и проиллюстрируем некоторые из них наглядными опытами. Примем во внимание, что лучшее освещение при проведении всех опытов — рассеянный дневной свет из окна, а цвета интерференции хорошо видны на тёмном фоне.

Интерферирующие плёнки дают многие оксиды металлов. Поразительное зрелище представляют собой причудливые радужные кристаллы висмута. Их часто используют как сувениры и украшения. А швейцарский фотограф Фабиан Офнер создал из расплавленного висмута серию абстрактных картин. Сначала он плавил металл, затем выливал его на плоскую поверхность и разравнивал с помощью шпателя. На одну картину уходило около килограмма висмута, а на весь проект было израсходовано 90 кг.

Распространённый пример интерференции оксидных плёнок — так называемые цвета побежалости стали. Достаточно довольно слабого нагрева чистой поверхности стали, и на ней возникает меняющаяся последовательность цветов.

Цвета побежалости на лезвии ножа

Проведём несложный опыт. Возьмём лезвие канцелярского ножа, протрём его поверхность салфеткой и, держа пинцетом или пассатижами, поместим ненадолго возле пламени газовой конфорки или спиртовки. В процессе нагрева мы увидим на лезвии меняющиеся цветные полосы, возникающие вследствие образования тончайшей невидимой плёнки оксида железа.

Цвета побежалости до распространения пирометров и других измерителей температуры широко использовали в качестве индикатора температуры нагрева железа и стали при термообработке. По ним также судили о температуре нагрева стальной стружки и, следовательно, резца при операциях точения, сверления, резания. Например, для углеродистой стали характерны следующие переходы цвета: соломенный (220°C), коричневый (240°C), пурпурный (260°C), синий (300°C), светло-серый (330—350°C). Для нержавеющих сталей: светло-соломенный (300°C), соломенный (400°C), красно-коричневый (500°C), фиолетово-синий (600°C), синий (700°C).

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Бабочка барония — живое ископаемое Бабочка барония — живое ископаемое

Живых представителей древних видов бабочек можно встретить и по сей день

Наука и жизнь
«Я все говорил, что хочу умереть в 30 лет,— что ж, мне уже 29» «Я все говорил, что хочу умереть в 30 лет,— что ж, мне уже 29»

Фрэнсис Скотт Фицджеральд о том, как все надоело

Weekend
Распилить все поровну Распилить все поровну

Мадагаскар – одна из беднейших стран в мире

Вокруг света
Почему у человека нет хвоста? Ответ генетиков Почему у человека нет хвоста? Ответ генетиков

У человека и человекообразных обезьян нет хвоста. Почему?

Популярная механика
Гёттинген на берегах Невы: Бесподобный учитель Пауль Эренфест Гёттинген на берегах Невы: Бесподобный учитель Пауль Эренфест

Кто такой Пауль Эренфест и что он сделал для физики?

Наука и жизнь
«Раньше было лучше»: картина Вермеера после реставрации вызвала споры в Сети «Раньше было лучше»: картина Вермеера после реставрации вызвала споры в Сети

Почему реставрации не всегда приходятся по вкусу ценителям искусства

Psychologies
Бактерии на службе у насекомых Бактерии на службе у насекомых

Биомиметика черпает у насекомых идеи: от разработки тканей до создания роботов

Наука и жизнь
Тимоти Шаламе и Дени Вильнев о «Дюне», страхах и первом знакомстве Тимоти Шаламе и Дени Вильнев о «Дюне», страхах и первом знакомстве

Тимоти Шаламе и Дени Вильнев встретились с Cosmo

Cosmopolitan
«Нельзя терять ни минуты» «Нельзя терять ни минуты»

В 1930 году в СССР состоялись 13 453 массовых крестьянских выступления

Дилетант
8 неизвестных сериалов по книгам Агаты Кристи 8 неизвестных сериалов по книгам Агаты Кристи

Достойные многосерийные сериалы, снятые по книгам «королевы детектива»

Psychologies
Время ацтеков Время ацтеков

Что зашифровали ацтеки

Вокруг света
Снимают фильмы, закрывают лица: как звезды пытаются помочь женщинам Афганистана Снимают фильмы, закрывают лица: как звезды пытаются помочь женщинам Афганистана

Как многие знаменитости пытаются помочь афганкам обрести свободу

Cosmopolitan
Джейсон Стейтем Джейсон Стейтем

Правила жизни Джейсона Стейтема

Esquire
Разница во времени Разница во времени

Если один из партнеров заметно старше, жди скандала

Cosmopolitan
Теплое течение Теплое течение

Что побуждает людей не просто помогать другим, а подчинять этому всю свою жизнь?

Лиза
Мячи мечты Мячи мечты

Актрисе Валерии Шкирандо удалось улучшить эротическую съемку в мужском журнале!

Maxim
Что блокирует нашу сексуальную энергию и как ее освободить Что блокирует нашу сексуальную энергию и как ее освободить

Может ли сексуальная энергия просто исчезнуть?

Psychologies
Как писать эротические сообщения девушке Как писать эротические сообщения девушке

Негласные правила сексуальной переписки

Maxim
Мадонна: да, нет, знаю Мадонна: да, нет, знаю

Мадонна: «Мне казалось, что я ничего не стою»

Glamour
Танцы с пиками Танцы с пиками

Как Эйзенштейн планировал оправдать Сталина, а в результате его обличил

Weekend

Рассказ о брате-близнеце, который погиб во время терактов 11 сентября 2001 года

Esquire
Гуайява, сладкий плод с экзотическим ароматом Гуайява, сладкий плод с экзотическим ароматом

История экзотического фрукта гуавы

Наука и жизнь
Темное дело Темное дело

Британский дизайнер Нил Барретт решил, что яркие краски дома не нужны

AD
7 вопросов, которые помогут уменьшить число конфликтов в отношениях 7 вопросов, которые помогут уменьшить число конфликтов в отношениях

В чем причина скандалов в паре и как их можно избежать?

Psychologies
Сделайте, как было: почему звезды избавляются от грудных имплантов Сделайте, как было: почему звезды избавляются от грудных имплантов

Удаление грудных имплантов — тенденция, набирающая обороты последние пару лет

РБК
Охотники-рыболовы на северо-востоке Швеции научились плавить железо около 2200 лет назад Охотники-рыболовы на северо-востоке Швеции научились плавить железо около 2200 лет назад

Археологи обнаружили на двух стоянках свидетельства развитой металлургии

N+1
«Петровы в гриппе» — фильм, который обретает новый смысл теперь, когда Россия закончила выступление и в Венеции, и в Каннах «Петровы в гриппе» — фильм, который обретает новый смысл теперь, когда Россия закончила выступление и в Венеции, и в Каннах

«Петровы в гриппе» — фильм, от которого бросает то в холод, то в жар

Esquire
Что делать, если вашу внешность критикуют Что делать, если вашу внешность критикуют

Что отвечать тем, кто критикует вашу внешность?

Psychologies
Деньги за деньги: как платить управляющему капиталом Деньги за деньги: как платить управляющему капиталом

Есть доход — возьмите свой кусочек пирога, нет — ничего вам не положено

Forbes
Как погибла цивилизация инков Как погибла цивилизация инков

Как черная оспа и конкистадоры уничтожили цивилизацию

Вокруг света
Открыть в приложении