На сегодняшний день нет области знаний, где бы число е не использовалось

Наука и жизньНаука

Число круче, чем π

Кандидат физико-математических наук Алексей Понятов

Швейцарский математик Якоб Бернулли (1655—1705), первооткрыватель числа е, один из основоположников теории вероятностей и математического анализа. Иллюстрация: Wikimedia Commons/PD

Вопрос о том, кто открыл число е, до сих пор вызывает споры. Долгое время математики, фактически пользуясь этим числом, никак не могли его распознать. Однако потрясающая особенность е появляться в самых неожиданных контекстах и помогать с описанием самых разных природных, технических, экономических и демографических процессов привела к тому, что на сегодняшний день нет, пожалуй, области знаний, где бы оно не использовалось, а некоторые науки обязаны ему значительными успехами.

Прячущееся в логарифмах

Число е пришло в математику достаточно поздно, поскольку не имело геометрического происхождения в отличие от π, √2 или золотого сечения, известных ещё с древности. Неявно оно появилось практически одновременно с изобретением логарифмов в 1614 году, как основание одного из видов логарифмов, который лишь через полвека получил название натурального. Правда, у «отца» логарифмов шотландского математика Джона Непера логарифм был не совсем натуральный (его основание близко к 1/е), но уже в 1618 году в приложении к переводу его труда на английский язык появилась табличка из нескольких натуральных логарифмов, сделанная, вероятно, английским математиком и изобретателем логарифмической линейки Уильямом Отредом. А на следующий год другой англичанин, математик и преподаватель Джон Спейделл издал таблицы натуральных логарифмов чисел от 1 до 1000 и синусов под названием «Новые логарифмы…». В 1624 году создатель первых таблиц десятич-ных логарифмов профессор математики в Оксфорде Генри Бригс вычислил коэффициент, позволяющий связать десятичные логарифмы с натуральными. Фактически это был десятичный логарифм е.

Однако само число е тогда введено не было. Дело в том, что алгоритмы вычисления логарифмов того времени (см. статью «Его величество логарифм», «Наука и жизнь» № 5, 2020 г.) не предусматривали понятия их основания. То, что вычисляемые в те годы логарифмы были по основаниям десять (десятичные) или е (натуральные), стало понятно значительно позже. Более того, даже связь логарифмов с показателями степеней (y = logex; x = ey), с которой начинается их изучение в современной школе, была обнаружена значительно позже. Точно известно, что эту связь в 1684 году уже знал шотландский математик Джеймс Грегори, которого Исаак Ньютон называл в числе своих учителей и вдохновителей. Так что, когда в наше время е называют неперовым числом — это не вполне корректно. Непер не знал этого числа и даже не изобрёл собственно натуральный логарифм.

Любопытно, что термин «экспонента», сейчас прочно связанный с е, появился ещё раньше. Первым, кто использовал слово exponent в значении «показатель степени», был немецкий математик Михаэль Штифель — это понятие встречается в его книге «Arithmetica integra», вышедшей в 1544 году. Именно Штифель, по сути, предложил алгоритм вычисления логарифмов на основе сопоставления арифметической и геометрической прогрессий, использованный Непером. Но поскольку сам Штифель никаких вычислений не сделал, то слава первооткрывателя досталась шотландцу.

Слово «экспонента» происходит от латинского exponentis — «показывающий». Термин экспоненциальная, или показательная функция (кривая) для зависимости y = ax ввёл Лейбниц в 1679 году. В настоящее время функцию y = ax принято называть показательной, а название экспоненциальная функция (экспонента) закреплено за y = ex.

Логарифмы в отсутствии вычислительных машин играли огромную роль в вычислениях, облегчая и упрощая их. Неудивительно, что они были объектом пристального внимания многих учёных, в том числе фигур первой величины — Иоганна Кеплера, Исаака Ньютона, Готфрида Лейбница и Христиана Гюйгенса.

В 1649 году бельгийский математик Грегуар де Сен-Венсан выяснил, что площадь фигуры, ограниченной осью х и гиперболой y = 1/x, изменяется от х по логарифмическому закону. С его лёгкой руки такие логарифмы стали называть гиперболическими. Однако никто тогда не догадался посмотреть, при каком x площадь такой фигуры равна 1 (а это будет как раз при x = e), так что e и в этот раз найдено не было.

Бельгийский математик Грегуар де Сен-Венсан выяснил, что площадь S(x) фигуры, ограниченной осью х и гиперболой , равна натуральному логарифму от значения х. Приведена современная запись этого утверждения в виде интеграла.

В 1668 году благодаря фундаментальному труду «Logarithmotechnia» немецкого математика Николаса Меркатора в научный язык входит термин «натуральный логарифм», но неуловимое число е по-прежнему остаётся в тени. (Кстати, современное обозначение «ln» по первым буквам слов «логарифм» и «натуральный» появилось лишь через 200 лет, в 1893 году его ввёл американский математик Ирвинг Стрингхем.)

Число е как предел

Первым число е неожиданно вычислил швейцарский математик Якоб Бернулли, решая задачу, никак не связанную с логарифмами. В 1690 году он опубликовал исследование так называемого сложного процента — дохода, составляющего определённый процент (р — процентная ставка, доля) от предоставляемой суммы денежных средств. При каждом очередном его вычислении учитывается исходная сумма вместе с начисленными ранее процентами. Таким образом, исходная сумма S0 после n начислений превращается в

S = (1 + p)n · S0.

Например, при годовой процентной ставке 100% (р = 1) исходная сумма по истечении года (n = 1) удваивается, и каждый рубль превращается в два. Но что будет с полученным доходом, если начислять процент чаще, но во столько же раз уменьшать процентную ставку? Например, если каждые полгода начислять по 50% (р = 0,5), то в конце года у вас вместо 1 рубля будет:

S = (1 + ½)2 · 1 руб. = 2,25 руб.

А если начислять каждый месяц, то

S = (1 + 1/12)12 · 1 руб. = 2,261303… руб.

Бернулли показал, что если частоту начисления процентов увеличивать бесконечно, то величина (1 + 1/n)n имеет предел, лежащий между 2,5 и 3. Это была первая грубая оценка числа е. Бернулли не представлял всей значимости полученного им результата, а потому не стал проводить длительные трудоёмкие вычисления, определяя это значение более точно. Он даже не дал ему никакого обозначения. А ведь именно этот предел теперь служит в математике определением числа е. В со-временных обозначениях:

Именно такую сумму даст 1 рубль за год, если начислять процент непрерывно.

Имя Якоба Бернулли также связано с натуральным логарифмом и числом e через изученные им свойства различных кривых. Правда, их связи с найденным пределом он не увидел, возможно, просто не успел, поскольку скончался в возрасте 50 лет. Любимым объектом изучения Бернулли стала так называемая логарифмическая спираль, современная формула которой записывается как ln r = kθ или r = ae, где a, b и k — константы. Именно Бернулли первым начал широко использовать при построении кривых полярные координаты (в них положение точки на плоскости описывается двумя числами: радиусом r и углом θ).

В отличие от спирали Архимеда, где витки идут через одинаковое расстояние, витки логарифмической спирали расходятся (расстояние между ними увеличивается). Она часто встречается в природе, её можно обнаружить в строении живых организмов, ураганов и даже галактик. Нашла логарифмическая спираль своё место и в искусстве как способ построения орнаментов и композиций. Так, великий художник эпохи Возрождения Альбрехт Дюрер посвятил ей труд, где показывал, как строить и применять спираль для вычерчивания волют (завитков) капителей, побегов с листвой или украшений епископского жезла.

Рукава галактики M 51 в созвездии Гончие Псы представляют собой логарифмическую спираль. Иллюстрация: NASA/ESA/S. Beckwith (STScI)/Hubble Heritage Team (STScI/AURA)
Разрез раковины головоногого моллюска наутилуса, показывающий камеры, расположенные приблизительно по логарифмической спирали (пунктирная синяя кривая). Иллюстрация: Dicklyon/Wikimedia Commons/CC BY-SA 4.0
Арка в форме цепной линии в шахском дворце Сасанидов Таки-Кисра (не позднее III века до н. э.) в одном из крупнейших городов античности Ктесифоне (в 32 км от современного Багдада, Ирак). Фото: Library of Congress’s Prints and Photographs/PD

Сейчас даже трудно представить, с какими сложностями сталкивались исследователи того времени, не имея в своём распоряжении современных форм математической записи и средств математического анализа. Задачи, которые в наше время за считаные минуты решит студент-первокурсник, требовали от них месяцев напряжённой работы и совершения открытий.

Логарифмическая спираль настолько восхитила Бернулли своими свойствами, что он называл её «spira mirabilis» — «удивительная спираль» и даже завещал выбить её на своём надгробии вместе с надписью «EADEM MUTATA RESURGO» («изменённая, я возрождаюсь такой же»), которая описывает свойство этой кривой сохранять свою форму после некоторых преобразований. Правда, тут история немного пошутила над математиком, необразованный мастер изобразил на надгробии спираль Архимеда…

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

«У нас нет хлеба, мы умираем» «У нас нет хлеба, мы умираем»

Массовый голод с человеческими жертвами в СССР случался неоднократно

Дилетант
Евпатий Коловрат: сотворение героя Евпатий Коловрат: сотворение героя

Существовал ли Евпатий Коловрат

Дилетант
Успеть за 15 секунд Успеть за 15 секунд

Людям надоело притворяться – в TikTok они остаются собой

Популярная механика
Женская энергия: узнай, как стать настоящей богиней Женская энергия: узнай, как стать настоящей богиней

Хочешь узнать, как развить свою энергию и сделать её максимально сильной?

Cosmopolitan
Курултай для своих, деспотия для чужих Курултай для своих, деспотия для чужих

В Орде русские князья считались бесправными вассалами

Дилетант
4 удивительных парадокса самовосприятия 4 удивительных парадокса самовосприятия

Исследуем парадоксы самовосприятия и отвечаем на каверзные вопросы

Maxim
Дачное время Дачное время

Можно ли охватить несколькими предложениями дачный мир?

Наука и жизнь
Старая Земля: почему важно открытие планеты у одной из древнейших звезд в Галактике Старая Земля: почему важно открытие планеты у одной из древнейших звезд в Галактике

Астрономы открыли планетную систему у одной из древнейших звезд Галактики

Forbes
Геометрия в стиле да Винчи Геометрия в стиле да Винчи

Преобразование фигур стало главной темой математических исследований да Винчи

Наука и жизнь
«Праздник, который я никогда не забуду» «Праздник, который я никогда не забуду»

Самый странный и яркий Новый год нашей героини

Psychologies
Секретарь Республики Секретарь Республики

Нормальная жизнь Никколо ди Бернардо деи Макиавелли оборвалась 16 декабря 1512 г

Наука и жизнь
Как добыть энергию из черной дыры: необычная стратегия Как добыть энергию из черной дыры: необычная стратегия

Может ли энергия черной дыры когда-либо послужить для нужд человечества?

Популярная механика
Великое нашествие Великое нашествие

Вторжение монголов обратило русских государей в деспотов ордынского типа

Дилетант
Сытый и довольный: 8 здоровых продуктов, богатых полезными жирами Сытый и довольный: 8 здоровых продуктов, богатых полезными жирами

Чтобы быть красивым и здоровым, нужно включить в рацион эти продукты

Playboy
Наследник без престола Наследник без престола

Долгие годы Павел ждал корону, являясь законным наследником трона

Дилетант
Бетти Уайт — 99! Любопытные подробности о первой актрисе ситкомов Бетти Уайт — 99! Любопытные подробности о первой актрисе ситкомов

Чем так известна Бетти Уайт?

Cosmopolitan
На границе двух миров На границе двух миров

Порой они кажутся стражами, охраняющими прибрежную полоску песка

Наука и жизнь
Из подчиненного в начальники: 4 качества, которые сделают из тебя генерального директора Из подчиненного в начальники: 4 качества, которые сделают из тебя генерального директора

Присмотрись к этим советам, если у тебя есть серьезные карьерные амбиции.

Playboy
Марс, древняя жизнь и… утки Марс, древняя жизнь и… утки

«Утиный тест» — популярный способ протестировать очевидность происходящего

Наука и жизнь
От куртизанок до принцесс: 6 знаменитостей, заставивших нас полюбить чокеры От куртизанок до принцесс: 6 знаменитостей, заставивших нас полюбить чокеры

Вспоминаем знаменитостей, заставивших нас влюбиться в ожерелья "под горло".

Cosmopolitan
Вокруг временщика Вокруг временщика

По мере атрибуции портретов иногда складываются целые группы персонажей

Дилетант
Роберт Мур: Следы и тропы Роберт Мур: Следы и тропы

В книге «Следы и тропы» Роберт Мур рассказывает, какие секреты хранят тропы

СНОБ
Российские социологи предсказали обострение политической ситуации в США еще 10 лет назад. «Сноб» поговорил с одним из них Российские социологи предсказали обострение политической ситуации в США еще 10 лет назад. «Сноб» поговорил с одним из них

«‎Сноб» узнал, как будет развиваться ситуация в США и что ждет в будущем Россию

СНОБ
«Утренняя звезда» и «Оружие Запада»: что значат псевдонимы русских рэперов «Утренняя звезда» и «Оружие Запада»: что значат псевдонимы русских рэперов

Чем вдохновлялись русские рэперы, выбирая себе странные псевдонимы.

Cosmopolitan
Балийские макаки-крабоеды наладили бартер с людьми Балийские макаки-крабоеды наладили бартер с людьми

Макаки-крабоеды на острове Бали обменивают украденные у туристов вещи на еду

N+1
Шевели мозгами Шевели мозгами

Чтобы серое вещество не превратилось в серую массу, нужны постоянные нагрузки

GQ
Грузите лимоны бочками Грузите лимоны бочками

Как программист из Ульяновска стал совладельцем американской студии графики

Forbes
Темная сторона жены. Тест «Насколько хорошо ваша пара знает друг друга» Темная сторона жены. Тест «Насколько хорошо ваша пара знает друг друга»

Что ты знаешь о своей девушке? А что твоя девушка знает о тебе?

Maxim
Послепродажное обслуживание. Зачем ехать к дилеру, если в гараже дешевле? Послепродажное обслуживание. Зачем ехать к дилеру, если в гараже дешевле?

Сотрудники Mitsubishi рассказывают, зачем ехать к дилеру на обслуживание

4x4 Club
Физики предложили искать гравитационные волны с помощью радиотелескопов Физики предложили искать гравитационные волны с помощью радиотелескопов

Радиотелескопы могут стать инструментом для обнаружения гравитационных волн

N+1
Открыть в приложении