Как при росте возможностей ИИ снизить его ресурсопотребление

РБКHi-Tech

Быстрее, мощнее, эффективнее

Как при росте возможностей ИИ снизить его ресурсопотребление

Автор: Анастасия Михалева. Иллюстрации: Мария Нестерова

Технологии искусственного интеллекта потребляют много ресурсов: электричество, воду, требуют дорогого оборудования. «РБК Тренды» изучили, как компании оптимизируют свои модели и как они внедряют энергоэффективные технологии и альтернативные источники энергии.

Сколько ресурсов тратит ИИ

Современные системы искусственного интеллекта требуют колоссальных вычислительных мощностей. Обучение и работа нейросетей сопровождаются значительным потреблением электроэнергии, использованием больших объемов данных и эксплуатацией мощного аппаратного обеспечения. Чем сложнее модель, тем выше ее ресурсозатраты, что становится ключевым вызовом для развития ИИ.

Электричество и CO2

Одним из самых ярких примеров ресурсоемкости ИИ является нейросеть GPT-4, разработанная компанией OpenAI. По разным оценкам, обучение GPT-3 потребовало около 1287 МВт·ч электроэнергии, что эквивалентно годовому потреблению 120 американских домов. Также известно, что ChatGPT в настоящее время может потреблять около 39,98 млн кВт·ч в день — нейросетью пользуются 400 млн активных юзеров еженедельно.

Исследование Университета Массачусетса показало, что создание одной модели нейросети может привести к выбросу более 280 тыс. кг CO2 — эквиваленту пятилетнего цикла эксплуатации автомобиля с двигателем внутреннего сгорания. Такие показатели вызывают обеспокоенность у экологов и подталкивают компании к поиску энергоэффективных решений.

Оборудование

Кроме электроэнергии, ИИ требует эксплуатации дорогостоящего оборудования: графических процессоров (GPU), тензорных процессоров (TPU) и серверных ферм — по оценкам Schneider Electric, в 2023 году 80% нагрузки ИИ-моделей в дата-центрах пришлось на генерацию результата, а 20% — на обучение.

Современные серверы, работающие с ИИ, генерируют большое количество тепла, и их охлаждение становится еще одной статьей расходов. Например, крупнейшие дата-центры, которые принадлежат Google или Microsoft, используют системы жидкостного охлаждения, чтобы снизить температуру процессоров и увеличить их производительность. Однако даже такие меры не устраняют проблему быстрого износа оборудования: современные GPU, работающие на полную мощность, могут терять производительность через 3–5 лет эксплуатации.

Вода

Менее очевидный, но значимый фактор, — это потребление воды. В 2023 году выяснилось, что центры обработки данных OpenAI потребляют миллионы литров воды ежегодно для охлаждения своих серверов. Исследования показывают, что на одно крупное обращение к ChatGPT может расходоваться до 500 мл воды в зависимости от климатических условий и типа системы охлаждения.

В условиях глобального изменения климата и дефицита водных ресурсов такие показатели не могут не вызывать вопросов о разумном использовании воды в технологической отрасли.

С ростом популярности ИИ-сервисов, таких как генеративные модели, автономные системы и продвинутые аналитические алгоритмы, потребление ресурсов будет только увеличиваться. Компании уже начали разрабатывать энергоэффективные чипы, использовать возобновляемые источники энергии и внедрять квантовые вычисления, но эти меры пока не решают проблему в полной мере.

В ближайшем будущем перед ИИ-индустрией встанет ключевой вызов: как сбалансировать развитие технологий и сохранение окружающей среды. Очевидно, что без комплексного подхода, включающего в себя оптимизацию моделей, развитие «зеленых» дата-центров и внедрение более экономичных алгоритмов, проблема чрезмерного ресурсопотребления искусственным интеллектом останется актуальной.

Как уменьшить расход ресурсов

Один из наиболее эффективных способов снижения потребления ресурсов ИИ — это оптимизация алгоритмов и моделей. Современные нейросети часто бывают избыточно сложными, что приводит к ненужным вычислительным затратам. Компании и исследователи работают над методами уменьшения размеров моделей без потери качества.

Наиболее известный исследовательский центр, занимающийся этой проблемой, — Суперкомпьютерный центр MIT Lincoln Laboratory (LLSC). В нем ученые разрабатывает методы, которые помогут центрам обработки данных сократить потребление энергии. Что особенно важно, исследователи обнаружили, что эти методы оказывают минимальное влияние на производительность модели.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Открыть в приложении