Оптомеханическая система уменьшила квантовый шум при комнатной температуре
Физики изготовили устройство, которое способно при комнатной температуре подавлять до 15 процентов квантового шума в световом луче. Материал основного элемента установки — зеркала в оптомеханическом резонаторе — позволяет практически избавиться от воздействия тепловых флуктуаций и проводить измерения без дополнительного охлаждения системы. В будущем этот результат облегчит работу высокоточных приборов — в частности, гравитационных детекторов. Исследование опубликовано в журнале Nature Physics, препринт доступен на arXiv.org.
Природа квантовых явлений такова, что некоторые пары физических величин невозможно одновременно измерять сколь угодно точно — произведение стандартных отклонений (разбросов в значении) таких параметров имеет нижний предел, который задается соотношением неопределенностей. Чтобы подавить естественный квантовый шум и повысить точность измерений, физики приводят системы в специальные сжатые состояния — то есть уменьшают разброс одной величины ценой увеличения разброса другой (подробнее об этом можно узнать в материале «Точилка для квантового карандаша»).
На практике в сжатое состояние часто приводят электромагнитное излучение — в этом случае парой величин выступают интенсивность волны, которая связана с числом фотонов, и фаза колебаний, которая зависит от времени. Для повышения точности измерений ученые используют оптомеханические резонаторы — специальные оптические полости с подвижными границами (например, системы из закрепленного и перемещающегося зеркал). Проблемой в таких установках является тепловой шум — естественное хаотическое движение носителей заряда, которое также служит помехой для измерений. Прежде чем станет возможным подавление квантового шума, необходимо как минимум создать условия для его наблюдения — то есть сделать незначительными тепловые флуктуации. С этой целью установку, как правило,