Физикам удалось понаблюдать за контролируемым движением одиночного иона рубидия

N+1Наука

Одиночный ион провели сквозь бозе-конденсат

Никита Козырев

Thomas Dieterle et al. / Physical Review Letters, 2021

Физикам удалось понаблюдать за контролируемым движением одиночного иона рубидия сквозь конденсат Бозе — Эйнштейна из охлажденных атомов. Особенность эксперимента заключалась в том, что ученые могли с высокой точностью отслеживать траекторию и скорость иона в процессе движения сквозь конденсат, а также влиять на то, как быстро он проходит сквозь атомы и как часто испытывает столкновения с ними. В будущем такая методика позволит наблюдать за индивидуальными столкновениями ионов с охлажденными атомами в макроскопическом квантовом состоянии и изучать связанные с этим квантовые эффекты. Статья опубликована в журнале Physical Review Letters.

Обычно к квантовой физике обращаются при попытках описать поведение микроскопических систем, будь то отдельная частицы в потенциальной яме, ее рассеяние на другой частице, или же ее простейшее связанное состояние. Однако еще в первой половине 20 века физики поняли, что квантовые эффекты могут наблюдаться и в макроскопической системе, если охладить ее до определенной критической температуры. Именно так были открыты явления сверхтекучести и сверхпроводимости, которые имеют квантовую природу несмотря на макроскопические масштабы наблюдаемых эффектов.

К макроскопической квантовой системе можно отнести и конденсат Бозе — Эйнштейна — равновесную систему из большого числа бозонов (частиц или квазичастиц с целым спином), находящихся в одном и том же квантовом состоянии. Такое агрегатное состояние вещества возможно благодаря тому, что бозоны не подчиняются запрету Паули, сформулированному для фермионов (частиц с полуцелым спином), а значит могут одновременно находиться в своем основном состоянии. В таком случае вся система может быть описана одной волновой функцией, а значит квантовые эффекты могут проявляться на макроскопическом уровне. Однако получить бозе-конденсат удалось лишь в 1995 году (спустя 70 лет после теоретического предсказания его существования) из-за технической сложности процесса охлаждения большого числа атомов до чрезвычайно низких температур порядка сотен нанокельвинов.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Открыть в приложении