Водород давно и широко используется в химической и пищевой промышленности

Наука и жизньНаука

Где взять водород?

Кирилл Дегтярёв, Московский государственный университет им. М. В. Ломоносова

Электролизная станция с ресиверами хранения водорода. Березовская ГРЭС. Красноярский край (2014 год). Фото Валерия Акулича/Фотобанк Лори

Водород давно и довольно широко используется в химической и пищевой промышленности, в нефтепереработке. Но как об энергоресурсе о водороде заговорили сравнительно недавно. Первые экспериментальные проекты использования этого газа в качестве топлива для транспорта появились в начале текущего века. На протяжении двух десятилетий «водородный тренд» постепенно набирал силу. В широкое употребление вошло понятие «водородная экономика». Планы её развития, заявленные в ряде стран, включая Россию, подразумевают многократное увеличение производства и потребления водорода в энергетических целях — в качестве топлива, для производства электрической и тепловой энергии.

Предполагается, что водород наряду с возобновляемыми источниками энергии вытеснит «традиционные» углеводородные энергоносители. Водород активно позиционируют в качестве экологически безопасного «углеродно-нейтрального» источника энергии, а планируемый рост его производства и использования — как движение по пути декарбонизации мировой экономики и снижения потребления ресурсов. Под декарбонизацией понимается прекращение выбросов углерода и его соединений, прежде всего углекислого газа CO2, антропогенную эмиссию которого рассматривают в качестве одной из ключевых причин глобального потепления. Но с возможностью перевода энергетики на водород не так всё просто.

Лёгкий, горючий и очень теплотворный

Наверное, каждому из школьного курса химии известно, что водород — первый химический элемент таблицы Менделеева. Есть ряд изотопов водорода, но основной из них — протий (1H), на который приходится примерно 99,99% атомов водорода на Земле и во Вселенной. Ядро протия состоит всего из одного протона. Как следствие, это самый лёгкий химический элемент. Для сравнения, при нормальном атмосферном давлении 1 м3 воздуха имеет массу около 1,2 кг, 1 мприродного газа (метана CH4) — 700 г, а 1 м3 газообразного водорода (химическая формула H2) — всего 90 г. То есть водород почти в 8 раз легче природного газа и в 13 раз легче воздуха.

Водород бесцветен, не имеет запаха, при этом он химически активен, горюч и взрывоопасен. Но его горение действительно не даёт выбросов загрязнителей атмосферы. Реакция горения водорода идёт с образованием воды, с выделением большого количества энергии E (тепла): 2 H2 + O2 => 2H2O + E. То есть это тепло — экологически чистая энергия.

Водород — самый распространённый элемент во Вселенной, на него приходится почти 89% общего числа её атомов и около 75% её массы, поскольку этот газ — основное вещество звёзд и топливо для их «работы». Отметим, что остальные 11% атомов Вселенной приходятся на гелий — собственно, продукт «горения» звёзд, и только 0,1% — на все остальные химические элементы

Однако в обитаемом и доступном нам мире водорода на порядки меньше. Например, в земной коре его содержание оценивается всего в 1% по массе и около 17% — по общему количеству атомов. В земной атмосфере водород также выглядит исчезающе малой величиной — 5∙10─5% (0,00005%) общего объёма атмосферы и 3,5∙10─6% (0,0000035%) её массы. При этом свободного водорода на Земле мы почти не видим. Слишком лёгкий элемент в атмосфере плохо удерживается земным притяжением, но охотно вступает в химические реакции, образуя разные соединения, в которых он в основном и присутствует в географической оболочке.

Самое распространённое соединение водорода — вода, а самый большой на Земле резервуар этого газа — Мировой океан, на который приходится 96% воды на планете. Объём и масса вод Мирового океана — огромные величины: более 1,3 млрд км3 и, соответственно, 1,3∙1018 т. На водород в массе воды приходится 11%, то есть, в океанической воде его содержится примерно 1,4∙1017 т, и ещё приблизительно 5,6∙1015 т — в остальных водах Земли. Это в совокупности очень немного относительно массы земной коры, составляющей 2,8∙1019 т, — примерно полпроцента.

Оценим это количество водорода в энергетических единицах, сопоставляя с потребностями человечества. Теплотворная способность данного газа — 3,6 кВт∙ч/м3, или 40 кВт∙ч/кг и 40 МВт∙ч/т. Это примерно в три раза выше, чем у природного газа. Иными словами, только в пресных водах Земли (это всего 4% от всей земной воды) содержится 2,24∙1017 МВт∙ч, или 2,24∙1011 ТВт∙ч потенциальной водородной энергии. Для сравнения, вся энергия, потребляемая человечеством в течение года, менее 2∙105 ТВт∙ч1 — в миллион раз меньше. И нужно «всего» 5 млрд тонн водорода в год, чтобы обеспечить энергией всё человечество на текущем уровне. При этом в пресной воде Земли его больше в 1 млн раз, а в океанической — в 25 млн раз.

1 По данным International Energy Agency.

Огромное по сравнению с нуждами мирового энергопотребления количество водорода в виде его соединений содержится в запасах угля, нефти и газа, собственно, и называемых углеводородным сырьём. Дать точную цифру мировых ресурсов ископаемых углеводородов невозможно, но на данный момент только разведанные запасы в совокупности превышают 1 трлн тонн, и водорода в них не менее 100 млрд тонн, при этом на Земле разведано далеко не всё и ресурсная база постоянно пополняется.

Иными словами, теоретически, если мы начнём использовать водород в качестве топлива для выработки тепловой и электрической энергии, извлекая его только из воды, нам хватит его как энергоносителя на десятки миллионов лет, то есть навсегда.

Желанный, но такой дорогой

Почему же до сих пор водород не стал энергоносителем номер один?

Два главных способа получения этого газа в настоящее время — конверсия углеводородного сырья и электролиз воды. Но извлечение водорода из его соединений означает разрыв химических связей между водородом и кислородом в случае воды или между углеродом, кислородом и водородом в случае углеводородов. И оба процесса сопряжены с очень большими затратами энергии, с дорогостоящим оборудованием и, заметим, с загрязнением окружающей среды.

В настоящее время в мире производится около 75 млн т водорода в год, и пока его производство растёт невысокими темпами — менее 2% в год. При этом из углеводородного сырья добывается более 90% всего производимого водорода, в том числе 70% — с помощью конверсии природного газа, самого доступного способа. В основе процесса — подвод к природному газу тепла (нагрев печи до 600—1000°С) и водяного пара в присутствии металлического катализатора — кобальта, никеля, железа. Это самый дешёвый, но экологически грязный способ, оставляющий большой углеродный след, то есть выбросы CO2 в атмосферу. Он описывается химическими реакциями:

CH4 + H2O = CO + 3H2

СО + H2O = CO2 + H2

На выходе, как можно видеть, — большое количество углекислого газа. Кроме того, при расчёте стоимости процесса надо учитывать не только затраты собственно на работу печи, но и на добычу и транспортировку газа. И если рассматривать водород как топливо, то дешевле и экологически чище просто добывать и сжигать природный газ.

Есть и другие способы углеводородной конверсии — например, газификация и пиролиз угля и даже получение водорода из биомассы, но углеродный след и высокие затраты присущи всем этим решениям.

Если слегка коснуться цифр, то стоимость производства водорода методами углеводородной конверсии оценивается от $2 за 1 кг. Один лишь расход метана на производство 1 кг водорода составляет 5 м3, а при угольной конверсии производство 1 кг водорода потребует более 6 кг угля. Цена, очевидно, высока, при этом использование водорода как энергоносителя с КПД, равным 100%, невозможно, и количество полученной энергии в данном случае надо делить примерно на два—три. Добавим ещё затраты на создание и поддержание инфраструктуры для транспортировки и хранения водорода и получим исключительно дорогое топливо, производство которого далеко не безупречно с экологической точки зрения.

Водород долгое время хранили в сжатом либо жидком виде. Жидкий водород требует специального «криогенного» хранения (то есть в теплоизолированных контейнерах) и особого обращения из-за опасности взрыва. На фото огромный сосуд с жидким водородом в экспериментальной вакуумной камере в Исследовательском центре Льюиса (теперь Исследовательский центр Джона Гленна — John Glenn Research Center, NASA), 1967 год. Фото: NASA/GRC/Paul Riedel, Lloyd Trunk/Wikimedia Commons/PD

рения. Остаётся единственный экологически чистый способ получения водорода — извлечение его из воды, которой на Земле намного больше, чем углеводородного сырья, и она, очевидно, доступнее. Самый распространённый способ получения водорода из воды — электролиз, то есть разложение воды под действием электрического тока:

2H2O = 2H2 + O2

Побочный продукт электролиза — только кислород, однако этот процесс исключительно энергоёмкий. Для получения 1 кг водорода (напоминаем, теплотворная способность такого количества газа при 100%-ном КПД составит около 40 кВт∙ч) нужно затратить 40—50 кВт∙ч электроэнергии. Таким образом, расход энергии оказывается больше (а с учётом реальной эффективности использования конечного продукта — минимум вдвое больше), чем энергия, полученная на выходе. Что касается денежного эквивалента, то затраты на производство водорода путём электролиза оцениваются в $3—7 за 1 кг, что существенно выше, чем при конверсии углеводородов. И электролизом воды получают лишь 2% производимого водорода.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Лунный парадокс Лунный парадокс

Должен ли спутник Земли притягиваться к Земле сильнее, чем к Солнцу?

Наука и жизнь
10 причин, почему в салоне автомобиля неприятно пахнет 10 причин, почему в салоне автомобиля неприятно пахнет

Вам знаком этот противный запах, который может держаться в салоне автомобиля?

Популярная механика
Стекло под ногами, или как дневной свет попал в подвал Стекло под ногами, или как дневной свет попал в подвал

Город — словно остров в океане времени

Наука и жизнь
Химеры профессора Демихова: история самого странного ученого СССР Химеры профессора Демихова: история самого странного ученого СССР

Зарубежные хирурги называли его гением, советские коллеги — шарлатаном

Cosmopolitan
«У нас нет хлеба, мы умираем» «У нас нет хлеба, мы умираем»

Массовый голод с человеческими жертвами в СССР случался неоднократно

Дилетант
Советский поезд на магнитной подушке четверть века провел Советский поезд на магнитной подушке четверть века провел

ТП — удивительные советские поезда на магнитной подушке

Популярная механика
Иван Васильевич меняет биографию Иван Васильевич меняет биографию

Как физики расследуют преступления, совершенные сотни лет назад?

Популярная механика
Империя зла: почему иностранцы считают русских недружелюбными Империя зла: почему иностранцы считают русских недружелюбными

Иностранцы считают русских неприветливыми, но на самом деле мы совсем не злые

Cosmopolitan
«Маска» дала мне свободу и возможность петь то, что я хочу» «Маска» дала мне свободу и возможность петь то, что я хочу»

Кирилл Туриченко о череде удач и неудач в карьере и судьбоносном знакомстве

OK!
Продаёт мельницы для специй за €1500 с пожизненной гарантией: зачем Peugeot занимается кухонными принадлежностями Продаёт мельницы для специй за €1500 с пожизненной гарантией: зачем Peugeot занимается кухонными принадлежностями

Как Peugeot изобрела механизм размола и наладила экспорт мельниц

VC.RU
«Любого можно сделать умным» «Любого можно сделать умным»

Вадим Мошкович о том, зачем он открывает начальную школу и детский сад

Robb Report
Накопление пластика в Средиземноморье связали с его размером и миграцией из других районов Накопление пластика в Средиземноморье связали с его размером и миграцией из других районов

Группа греческих и итальянских ученых смоделировала накопление микропластика

N+1
Марс, древняя жизнь и… утки Марс, древняя жизнь и… утки

«Утиный тест» — популярный способ протестировать очевидность происходящего

Наука и жизнь
О чем мы не можем говорить О чем мы не можем говорить

Многим трудно говорить о половых органах, невозможно даже произнести их названия

Psychologies
10 крупнейших катаклизмов в истории Земли 10 крупнейших катаклизмов в истории Земли

Самые наглядные примеры катаклизмов прошлого и настоящего.

Популярная механика
Антропологи разобрались в одомашнивании овец и коз в Ашиклы-Хююке Антропологи разобрались в одомашнивании овец и коз в Ашиклы-Хююке

Как население Ашиклы-Хююк одомашнивало овец и коз?

N+1
Возвращение в Хогвартс: чем реюнион «Гарри Поттера» может удивить и расстроить фанатов саги Возвращение в Хогвартс: чем реюнион «Гарри Поттера» может удивить и расстроить фанатов саги

Чем спецэпизод все-таки хорош и почему магия Хогвартса по-прежнему работает

Esquire
Как рассказать о своем фетише Как рассказать о своем фетише

Как выбрать подходящий момент, чтобы рассказать о своих фантазиях?

GQ
Пионерка Мэри Пикфорд: как девочка на весь СССР заявила, что мечтает о миллионах Пионерка Мэри Пикфорд: как девочка на весь СССР заявила, что мечтает о миллионах

Как письмо одной девочки в издании «Пионер» ошеломило весь СССР

Cosmopolitan
Тормозной суппорт: как устроен и чем важен Тормозной суппорт: как устроен и чем важен

Что такое суппорт, зачем он нужен, как устроен и чем опасен его выход из строя

РБК
За закрытыми дверями: как мы соглашаемся с насилием и распространяем его дальше За закрытыми дверями: как мы соглашаемся с насилием и распространяем его дальше

Отрывок из книги «За закрытыми дверями» о домашнем насилии

Forbes
В чем разница между Голландией и Нидерландами? А язык нидерландский? А жителей как правильно называть? В чем разница между Голландией и Нидерландами? А язык нидерландский? А жителей как правильно называть?

Нидерланды — вторая по запутанности названий страна Европы после Великобритании

Maxim
Кто пришел на смену Пуаро и Шерлоку Холмсу: 15 лучших детективов ХХI века Кто пришел на смену Пуаро и Шерлоку Холмсу: 15 лучших детективов ХХI века

О чем пишут самые известные авторы детективов в ХХI веке?

Forbes
Новое слово в энергетике: зачем России нужен атомный реактор с замыканием топливного цикла Новое слово в энергетике: зачем России нужен атомный реактор с замыканием топливного цикла

Началось строительство свинцового атомного реактора на быстрых нейтронах

Популярная механика
Ёлки, столы и другие опыты: как ищет точки роста цех, который строил стенды для выставок, а потом — столы для удалёнки Ёлки, столы и другие опыты: как ищет точки роста цех, который строил стенды для выставок, а потом — столы для удалёнки

Когда спрос на твои основные продукты резко падает, а материалы не дешевеют

VC.RU
Краткий ликбез: что нужно знать о кометах Краткий ликбез: что нужно знать о кометах

Такие «космические снежки» — настоящие капсулы времени!

Популярная механика
Кажется, вам пора уже избавиться от самоуничижения Кажется, вам пора уже избавиться от самоуничижения

Самоуничижение уже находится за границами самоиронии

GQ
5 научных причин, по которым люди видят призраков 5 научных причин, по которым люди видят призраков

Ученые выдвинули целый ряд теорий о том, почему люди видят призраков

Maxim
«Наш мини-пиг весит 85 килограммов»: истории о том, как питомцы оказались не теми, за кого себя выдают «Наш мини-пиг весит 85 килограммов»: истории о том, как питомцы оказались не теми, за кого себя выдают

Истории о том, почему породистых животных нужно брать только у заводчиков

Playboy
«Не мошенник, а фантазёр»: история афериста Коровко, ставшего прототипом для героя Ильфа и Петрова «Не мошенник, а фантазёр»: история афериста Коровко, ставшего прототипом для героя Ильфа и Петрова

Кто такой Константин Коровко и как он стал прообразом для героя Ильфа и Петрова

VC.RU
Открыть в приложении