Водород давно и широко используется в химической и пищевой промышленности

Наука и жизньНаука

Где взять водород?

Кирилл Дегтярёв, Московский государственный университет им. М. В. Ломоносова

Электролизная станция с ресиверами хранения водорода. Березовская ГРЭС. Красноярский край (2014 год). Фото Валерия Акулича/Фотобанк Лори

Водород давно и довольно широко используется в химической и пищевой промышленности, в нефтепереработке. Но как об энергоресурсе о водороде заговорили сравнительно недавно. Первые экспериментальные проекты использования этого газа в качестве топлива для транспорта появились в начале текущего века. На протяжении двух десятилетий «водородный тренд» постепенно набирал силу. В широкое употребление вошло понятие «водородная экономика». Планы её развития, заявленные в ряде стран, включая Россию, подразумевают многократное увеличение производства и потребления водорода в энергетических целях — в качестве топлива, для производства электрической и тепловой энергии.

Предполагается, что водород наряду с возобновляемыми источниками энергии вытеснит «традиционные» углеводородные энергоносители. Водород активно позиционируют в качестве экологически безопасного «углеродно-нейтрального» источника энергии, а планируемый рост его производства и использования — как движение по пути декарбонизации мировой экономики и снижения потребления ресурсов. Под декарбонизацией понимается прекращение выбросов углерода и его соединений, прежде всего углекислого газа CO2, антропогенную эмиссию которого рассматривают в качестве одной из ключевых причин глобального потепления. Но с возможностью перевода энергетики на водород не так всё просто.

Лёгкий, горючий и очень теплотворный

Наверное, каждому из школьного курса химии известно, что водород — первый химический элемент таблицы Менделеева. Есть ряд изотопов водорода, но основной из них — протий (1H), на который приходится примерно 99,99% атомов водорода на Земле и во Вселенной. Ядро протия состоит всего из одного протона. Как следствие, это самый лёгкий химический элемент. Для сравнения, при нормальном атмосферном давлении 1 м3 воздуха имеет массу около 1,2 кг, 1 мприродного газа (метана CH4) — 700 г, а 1 м3 газообразного водорода (химическая формула H2) — всего 90 г. То есть водород почти в 8 раз легче природного газа и в 13 раз легче воздуха.

Водород бесцветен, не имеет запаха, при этом он химически активен, горюч и взрывоопасен. Но его горение действительно не даёт выбросов загрязнителей атмосферы. Реакция горения водорода идёт с образованием воды, с выделением большого количества энергии E (тепла): 2 H2 + O2 => 2H2O + E. То есть это тепло — экологически чистая энергия.

Водород — самый распространённый элемент во Вселенной, на него приходится почти 89% общего числа её атомов и около 75% её массы, поскольку этот газ — основное вещество звёзд и топливо для их «работы». Отметим, что остальные 11% атомов Вселенной приходятся на гелий — собственно, продукт «горения» звёзд, и только 0,1% — на все остальные химические элементы

Однако в обитаемом и доступном нам мире водорода на порядки меньше. Например, в земной коре его содержание оценивается всего в 1% по массе и около 17% — по общему количеству атомов. В земной атмосфере водород также выглядит исчезающе малой величиной — 5∙10─5% (0,00005%) общего объёма атмосферы и 3,5∙10─6% (0,0000035%) её массы. При этом свободного водорода на Земле мы почти не видим. Слишком лёгкий элемент в атмосфере плохо удерживается земным притяжением, но охотно вступает в химические реакции, образуя разные соединения, в которых он в основном и присутствует в географической оболочке.

Самое распространённое соединение водорода — вода, а самый большой на Земле резервуар этого газа — Мировой океан, на который приходится 96% воды на планете. Объём и масса вод Мирового океана — огромные величины: более 1,3 млрд км3 и, соответственно, 1,3∙1018 т. На водород в массе воды приходится 11%, то есть, в океанической воде его содержится примерно 1,4∙1017 т, и ещё приблизительно 5,6∙1015 т — в остальных водах Земли. Это в совокупности очень немного относительно массы земной коры, составляющей 2,8∙1019 т, — примерно полпроцента.

Оценим это количество водорода в энергетических единицах, сопоставляя с потребностями человечества. Теплотворная способность данного газа — 3,6 кВт∙ч/м3, или 40 кВт∙ч/кг и 40 МВт∙ч/т. Это примерно в три раза выше, чем у природного газа. Иными словами, только в пресных водах Земли (это всего 4% от всей земной воды) содержится 2,24∙1017 МВт∙ч, или 2,24∙1011 ТВт∙ч потенциальной водородной энергии. Для сравнения, вся энергия, потребляемая человечеством в течение года, менее 2∙105 ТВт∙ч1 — в миллион раз меньше. И нужно «всего» 5 млрд тонн водорода в год, чтобы обеспечить энергией всё человечество на текущем уровне. При этом в пресной воде Земли его больше в 1 млн раз, а в океанической — в 25 млн раз.

1 По данным International Energy Agency.

Огромное по сравнению с нуждами мирового энергопотребления количество водорода в виде его соединений содержится в запасах угля, нефти и газа, собственно, и называемых углеводородным сырьём. Дать точную цифру мировых ресурсов ископаемых углеводородов невозможно, но на данный момент только разведанные запасы в совокупности превышают 1 трлн тонн, и водорода в них не менее 100 млрд тонн, при этом на Земле разведано далеко не всё и ресурсная база постоянно пополняется.

Иными словами, теоретически, если мы начнём использовать водород в качестве топлива для выработки тепловой и электрической энергии, извлекая его только из воды, нам хватит его как энергоносителя на десятки миллионов лет, то есть навсегда.

Желанный, но такой дорогой

Почему же до сих пор водород не стал энергоносителем номер один?

Два главных способа получения этого газа в настоящее время — конверсия углеводородного сырья и электролиз воды. Но извлечение водорода из его соединений означает разрыв химических связей между водородом и кислородом в случае воды или между углеродом, кислородом и водородом в случае углеводородов. И оба процесса сопряжены с очень большими затратами энергии, с дорогостоящим оборудованием и, заметим, с загрязнением окружающей среды.

В настоящее время в мире производится около 75 млн т водорода в год, и пока его производство растёт невысокими темпами — менее 2% в год. При этом из углеводородного сырья добывается более 90% всего производимого водорода, в том числе 70% — с помощью конверсии природного газа, самого доступного способа. В основе процесса — подвод к природному газу тепла (нагрев печи до 600—1000°С) и водяного пара в присутствии металлического катализатора — кобальта, никеля, железа. Это самый дешёвый, но экологически грязный способ, оставляющий большой углеродный след, то есть выбросы CO2 в атмосферу. Он описывается химическими реакциями:

CH4 + H2O = CO + 3H2

СО + H2O = CO2 + H2

На выходе, как можно видеть, — большое количество углекислого газа. Кроме того, при расчёте стоимости процесса надо учитывать не только затраты собственно на работу печи, но и на добычу и транспортировку газа. И если рассматривать водород как топливо, то дешевле и экологически чище просто добывать и сжигать природный газ.

Есть и другие способы углеводородной конверсии — например, газификация и пиролиз угля и даже получение водорода из биомассы, но углеродный след и высокие затраты присущи всем этим решениям.

Если слегка коснуться цифр, то стоимость производства водорода методами углеводородной конверсии оценивается от $2 за 1 кг. Один лишь расход метана на производство 1 кг водорода составляет 5 м3, а при угольной конверсии производство 1 кг водорода потребует более 6 кг угля. Цена, очевидно, высока, при этом использование водорода как энергоносителя с КПД, равным 100%, невозможно, и количество полученной энергии в данном случае надо делить примерно на два—три. Добавим ещё затраты на создание и поддержание инфраструктуры для транспортировки и хранения водорода и получим исключительно дорогое топливо, производство которого далеко не безупречно с экологической точки зрения.

Водород долгое время хранили в сжатом либо жидком виде. Жидкий водород требует специального «криогенного» хранения (то есть в теплоизолированных контейнерах) и особого обращения из-за опасности взрыва. На фото огромный сосуд с жидким водородом в экспериментальной вакуумной камере в Исследовательском центре Льюиса (теперь Исследовательский центр Джона Гленна — John Glenn Research Center, NASA), 1967 год. Фото: NASA/GRC/Paul Riedel, Lloyd Trunk/Wikimedia Commons/PD

рения. Остаётся единственный экологически чистый способ получения водорода — извлечение его из воды, которой на Земле намного больше, чем углеводородного сырья, и она, очевидно, доступнее. Самый распространённый способ получения водорода из воды — электролиз, то есть разложение воды под действием электрического тока:

2H2O = 2H2 + O2

Побочный продукт электролиза — только кислород, однако этот процесс исключительно энергоёмкий. Для получения 1 кг водорода (напоминаем, теплотворная способность такого количества газа при 100%-ном КПД составит около 40 кВт∙ч) нужно затратить 40—50 кВт∙ч электроэнергии. Таким образом, расход энергии оказывается больше (а с учётом реальной эффективности использования конечного продукта — минимум вдвое больше), чем энергия, полученная на выходе. Что касается денежного эквивалента, то затраты на производство водорода путём электролиза оцениваются в $3—7 за 1 кг, что существенно выше, чем при конверсии углеводородов. И электролизом воды получают лишь 2% производимого водорода.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Лунный парадокс Лунный парадокс

Должен ли спутник Земли притягиваться к Земле сильнее, чем к Солнцу?

Наука и жизнь
Самая жестокая мать Третьего рейха: как воспитывала детей Магда Геббельс Самая жестокая мать Третьего рейха: как воспитывала детей Магда Геббельс

Фрау Геббельс — дьявольский идеал матери в Германии

Cosmopolitan
Продуманный безумец Продуманный безумец

В Петербурге XIX века встречались порой весьма оригинальные личности

Дилетант
Светлана Шишкова: «Чем пахнет счастье? Исповедь ароматерапевта» Светлана Шишкова: «Чем пахнет счастье? Исповедь ароматерапевта»

Светлана Шишкова – о том, как ей удается быть эффективной в нескольких сферах

Cosmopolitan
Рождение и гибель мегаполисов Рождение и гибель мегаполисов

Почему Вавилон пришел в упадок?

Вокруг света
Занять свое место Занять свое место

Мы погружаемся в тайны семейного прошлого — и меняется что-то в нас самих

Psychologies
Куда пропали воробьи? Куда пропали воробьи?

Что и кто угрожает воробьям?

Наука и жизнь
Аллергия на секс: как интимная близость может убить Аллергия на секс: как интимная близость может убить

У тебя есть минимум два способа превратить постельные игры в смертельный номер

Maxim
Сковородка на день рождения: что не так с желанием мужчин дарить посуду Сковородка на день рождения: что не так с желанием мужчин дарить посуду

Почему пылесос или кастрюля — плохой подарок для женщины

Cosmopolitan
Арт и деньги, два стола Арт и деньги, два стола

В интерьере высокого класса обязательно должно быть искусство

Robb Report
Это со мной уже было: почему мы испытываем дежавю Это со мной уже было: почему мы испытываем дежавю

Человек испытывает настойчивое ощущение, будто прежде бывал в подобной ситуации

Cosmopolitan
Евгений Водолазкин о смерти, библиотеках, современных читателях и писательском таланте Евгений Водолазкин о смерти, библиотеках, современных читателях и писательском таланте

В чем магия писателя Евгения Водолазкина?

СНОБ
Топ-7 проектов компании Apple, которые Топ-7 проектов компании Apple, которые

Эти разработки Apple могли бы изменить историю, но что-то пошло не так

Популярная механика
Театр у микрофона Театр у микрофона

Молодые столичные группы превращают концерты в настоящий спектакль

Vogue
Было у отца пятеро сыновей... Было у отца пятеро сыновей...

Как сложилась судьба сыновей имама Шамиля?

Дилетант
Широко открывая глаза Широко открывая глаза

Изучать свои чувства — это как ступить на экзотический, неизведанный остров

Psychologies
7 самых известных слепых знаменитостей 7 самых известных слепых знаменитостей

Как люди с частичным или полным отсутствием зрения изменили мир

Maxim
Валютные скрепы: почему Россию сложно отключить от доллара Валютные скрепы: почему Россию сложно отключить от доллара

Что будет, если отключить Россию от системы SWIFT?

Forbes
Забойная фантастика Забойная фантастика

Как на развитие жанра космической научной фантастики повлияла сырьевая экономика

Вокруг света
Биография Илона Маска. Жизнь самого известного человека 21 века Биография Илона Маска. Жизнь самого известного человека 21 века

Илон Маск — человек или инопланетянин?

Цифровой океан
Полупроводниковые кубиты вступили в квантовую гонку Полупроводниковые кубиты вступили в квантовую гонку

Ученые смогли показать возможности квантовых процессоров на полупроводниках

N+1
Как менялась Рената Литвинова: из угловатой девчонки в утонченную диву Как менялась Рената Литвинова: из угловатой девчонки в утонченную диву

В это трудно поверить, но Ренате Литвиновой уже 55 лет!

Cosmopolitan
В текущем режиме В текущем режиме

Как «разогнать» лимфу и поддерживать её оптимальную скорость?

Лиза
Базовые ценности. Тест-драйв начальной Suzuki Vitara Базовые ценности. Тест-драйв начальной Suzuki Vitara

Suzuki Vitara — незадушенный «атмосферник» и надежный автомат

РБК
Как узнать, что за девушка перед тобой, по напитку, который она заказала в баре? Отвечает бармен Как узнать, что за девушка перед тобой, по напитку, который она заказала в баре? Отвечает бармен

Женщины и коктейли, которые они выбирают

Maxim
Удивительные факты о фильме «Любовь и голуби», который хотели запретить в СССР Удивительные факты о фильме «Любовь и голуби», который хотели запретить в СССР

Как снимался фильм «Любовь и голуби» и почему мог вообще не выйти в прокат

Cosmopolitan
Капитализм сбился с пути: почему нечистоплотные бизнесмены всегда терпят крах Капитализм сбился с пути: почему нечистоплотные бизнесмены всегда терпят крах

Отрывок из книги «Этичный капиталист» — почему отношение к сотрудникам так важно

Forbes
«Лакричная пицца»: солнечная комедия Пола Томаса Андерсона о взрослении «Лакричная пицца»: солнечная комедия Пола Томаса Андерсона о взрослении

«Лакричная пицца» — теплый, смешной и доступный фильм

РБК
Химеры профессора Демихова: история самого странного ученого СССР Химеры профессора Демихова: история самого странного ученого СССР

Зарубежные хирурги называли его гением, советские коллеги — шарлатаном

Cosmopolitan
Как купить или продать NFT: зарабатываем на цифровом искусстве Как купить или продать NFT: зарабатываем на цифровом искусстве

Как покупать и продавать NFT-картины, стихи, гифки или песни

CHIP
Открыть в приложении