Водород давно и широко используется в химической и пищевой промышленности

Наука и жизньНаука

Где взять водород?

Кирилл Дегтярёв, Московский государственный университет им. М. В. Ломоносова

Электролизная станция с ресиверами хранения водорода. Березовская ГРЭС. Красноярский край (2014 год). Фото Валерия Акулича/Фотобанк Лори

Водород давно и довольно широко используется в химической и пищевой промышленности, в нефтепереработке. Но как об энергоресурсе о водороде заговорили сравнительно недавно. Первые экспериментальные проекты использования этого газа в качестве топлива для транспорта появились в начале текущего века. На протяжении двух десятилетий «водородный тренд» постепенно набирал силу. В широкое употребление вошло понятие «водородная экономика». Планы её развития, заявленные в ряде стран, включая Россию, подразумевают многократное увеличение производства и потребления водорода в энергетических целях — в качестве топлива, для производства электрической и тепловой энергии.

Предполагается, что водород наряду с возобновляемыми источниками энергии вытеснит «традиционные» углеводородные энергоносители. Водород активно позиционируют в качестве экологически безопасного «углеродно-нейтрального» источника энергии, а планируемый рост его производства и использования — как движение по пути декарбонизации мировой экономики и снижения потребления ресурсов. Под декарбонизацией понимается прекращение выбросов углерода и его соединений, прежде всего углекислого газа CO2, антропогенную эмиссию которого рассматривают в качестве одной из ключевых причин глобального потепления. Но с возможностью перевода энергетики на водород не так всё просто.

Лёгкий, горючий и очень теплотворный

Наверное, каждому из школьного курса химии известно, что водород — первый химический элемент таблицы Менделеева. Есть ряд изотопов водорода, но основной из них — протий (1H), на который приходится примерно 99,99% атомов водорода на Земле и во Вселенной. Ядро протия состоит всего из одного протона. Как следствие, это самый лёгкий химический элемент. Для сравнения, при нормальном атмосферном давлении 1 м3 воздуха имеет массу около 1,2 кг, 1 мприродного газа (метана CH4) — 700 г, а 1 м3 газообразного водорода (химическая формула H2) — всего 90 г. То есть водород почти в 8 раз легче природного газа и в 13 раз легче воздуха.

Водород бесцветен, не имеет запаха, при этом он химически активен, горюч и взрывоопасен. Но его горение действительно не даёт выбросов загрязнителей атмосферы. Реакция горения водорода идёт с образованием воды, с выделением большого количества энергии E (тепла): 2 H2 + O2 => 2H2O + E. То есть это тепло — экологически чистая энергия.

Водород — самый распространённый элемент во Вселенной, на него приходится почти 89% общего числа её атомов и около 75% её массы, поскольку этот газ — основное вещество звёзд и топливо для их «работы». Отметим, что остальные 11% атомов Вселенной приходятся на гелий — собственно, продукт «горения» звёзд, и только 0,1% — на все остальные химические элементы

Однако в обитаемом и доступном нам мире водорода на порядки меньше. Например, в земной коре его содержание оценивается всего в 1% по массе и около 17% — по общему количеству атомов. В земной атмосфере водород также выглядит исчезающе малой величиной — 5∙10─5% (0,00005%) общего объёма атмосферы и 3,5∙10─6% (0,0000035%) её массы. При этом свободного водорода на Земле мы почти не видим. Слишком лёгкий элемент в атмосфере плохо удерживается земным притяжением, но охотно вступает в химические реакции, образуя разные соединения, в которых он в основном и присутствует в географической оболочке.

Самое распространённое соединение водорода — вода, а самый большой на Земле резервуар этого газа — Мировой океан, на который приходится 96% воды на планете. Объём и масса вод Мирового океана — огромные величины: более 1,3 млрд км3 и, соответственно, 1,3∙1018 т. На водород в массе воды приходится 11%, то есть, в океанической воде его содержится примерно 1,4∙1017 т, и ещё приблизительно 5,6∙1015 т — в остальных водах Земли. Это в совокупности очень немного относительно массы земной коры, составляющей 2,8∙1019 т, — примерно полпроцента.

Оценим это количество водорода в энергетических единицах, сопоставляя с потребностями человечества. Теплотворная способность данного газа — 3,6 кВт∙ч/м3, или 40 кВт∙ч/кг и 40 МВт∙ч/т. Это примерно в три раза выше, чем у природного газа. Иными словами, только в пресных водах Земли (это всего 4% от всей земной воды) содержится 2,24∙1017 МВт∙ч, или 2,24∙1011 ТВт∙ч потенциальной водородной энергии. Для сравнения, вся энергия, потребляемая человечеством в течение года, менее 2∙105 ТВт∙ч1 — в миллион раз меньше. И нужно «всего» 5 млрд тонн водорода в год, чтобы обеспечить энергией всё человечество на текущем уровне. При этом в пресной воде Земли его больше в 1 млн раз, а в океанической — в 25 млн раз.

1 По данным International Energy Agency.

Огромное по сравнению с нуждами мирового энергопотребления количество водорода в виде его соединений содержится в запасах угля, нефти и газа, собственно, и называемых углеводородным сырьём. Дать точную цифру мировых ресурсов ископаемых углеводородов невозможно, но на данный момент только разведанные запасы в совокупности превышают 1 трлн тонн, и водорода в них не менее 100 млрд тонн, при этом на Земле разведано далеко не всё и ресурсная база постоянно пополняется.

Иными словами, теоретически, если мы начнём использовать водород в качестве топлива для выработки тепловой и электрической энергии, извлекая его только из воды, нам хватит его как энергоносителя на десятки миллионов лет, то есть навсегда.

Желанный, но такой дорогой

Почему же до сих пор водород не стал энергоносителем номер один?

Два главных способа получения этого газа в настоящее время — конверсия углеводородного сырья и электролиз воды. Но извлечение водорода из его соединений означает разрыв химических связей между водородом и кислородом в случае воды или между углеродом, кислородом и водородом в случае углеводородов. И оба процесса сопряжены с очень большими затратами энергии, с дорогостоящим оборудованием и, заметим, с загрязнением окружающей среды.

В настоящее время в мире производится около 75 млн т водорода в год, и пока его производство растёт невысокими темпами — менее 2% в год. При этом из углеводородного сырья добывается более 90% всего производимого водорода, в том числе 70% — с помощью конверсии природного газа, самого доступного способа. В основе процесса — подвод к природному газу тепла (нагрев печи до 600—1000°С) и водяного пара в присутствии металлического катализатора — кобальта, никеля, железа. Это самый дешёвый, но экологически грязный способ, оставляющий большой углеродный след, то есть выбросы CO2 в атмосферу. Он описывается химическими реакциями:

CH4 + H2O = CO + 3H2

СО + H2O = CO2 + H2

На выходе, как можно видеть, — большое количество углекислого газа. Кроме того, при расчёте стоимости процесса надо учитывать не только затраты собственно на работу печи, но и на добычу и транспортировку газа. И если рассматривать водород как топливо, то дешевле и экологически чище просто добывать и сжигать природный газ.

Есть и другие способы углеводородной конверсии — например, газификация и пиролиз угля и даже получение водорода из биомассы, но углеродный след и высокие затраты присущи всем этим решениям.

Если слегка коснуться цифр, то стоимость производства водорода методами углеводородной конверсии оценивается от $2 за 1 кг. Один лишь расход метана на производство 1 кг водорода составляет 5 м3, а при угольной конверсии производство 1 кг водорода потребует более 6 кг угля. Цена, очевидно, высока, при этом использование водорода как энергоносителя с КПД, равным 100%, невозможно, и количество полученной энергии в данном случае надо делить примерно на два—три. Добавим ещё затраты на создание и поддержание инфраструктуры для транспортировки и хранения водорода и получим исключительно дорогое топливо, производство которого далеко не безупречно с экологической точки зрения.

Водород долгое время хранили в сжатом либо жидком виде. Жидкий водород требует специального «криогенного» хранения (то есть в теплоизолированных контейнерах) и особого обращения из-за опасности взрыва. На фото огромный сосуд с жидким водородом в экспериментальной вакуумной камере в Исследовательском центре Льюиса (теперь Исследовательский центр Джона Гленна — John Glenn Research Center, NASA), 1967 год. Фото: NASA/GRC/Paul Riedel, Lloyd Trunk/Wikimedia Commons/PD

рения. Остаётся единственный экологически чистый способ получения водорода — извлечение его из воды, которой на Земле намного больше, чем углеводородного сырья, и она, очевидно, доступнее. Самый распространённый способ получения водорода из воды — электролиз, то есть разложение воды под действием электрического тока:

2H2O = 2H2 + O2

Побочный продукт электролиза — только кислород, однако этот процесс исключительно энергоёмкий. Для получения 1 кг водорода (напоминаем, теплотворная способность такого количества газа при 100%-ном КПД составит около 40 кВт∙ч) нужно затратить 40—50 кВт∙ч электроэнергии. Таким образом, расход энергии оказывается больше (а с учётом реальной эффективности использования конечного продукта — минимум вдвое больше), чем энергия, полученная на выходе. Что касается денежного эквивалента, то затраты на производство водорода путём электролиза оцениваются в $3—7 за 1 кг, что существенно выше, чем при конверсии углеводородов. И электролизом воды получают лишь 2% производимого водорода.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Сиенские супруги Сиенские супруги

Джанноддза Сарачени и Мариотто Миньянелли жили и друг друга любили в Сиене

Наука и жизнь
От Джулии Робертс до Пинк: звезды, реальный возраст которых выдает нос От Джулии Робертс до Пинк: звезды, реальный возраст которых выдает нос

Ты удивишься, но на самом деле нос тоже стареет и меняет форму

Cosmopolitan
Запад нам помог Запад нам помог

Помощь «империалистических хищников» спасла миллионы жизней советских граждан

Дилетант
История нержавеющей стали: кто и когда ее изобрел История нержавеющей стали: кто и когда ее изобрел

Сто лет назад мир услышал о замечательном материале – нержавеющей стали

Популярная механика
Зачем насекомым хоботки? Зачем насекомым хоботки?

Насекомые приспособлены к условиям обитания лучше большинства других животных

Наука и жизнь
В поисках себя В поисках себя

Изменения моды: смешение гендерных ролей, появление нейтрального гардероба

Домашний Очаг
Человек, который придумывает будущее Человек, который придумывает будущее

Компания с российскими корнями разрабатывает уникальные технологии для авто

Популярная механика
Исследователи из Meta разработали мультимодальный метод обучения нейросетей Исследователи из Meta разработали мультимодальный метод обучения нейросетей

Один метод обучения позволяет учить модели для работы с разными данными

N+1
«Кузов из фольги». Чем недовольны покупатели популярных автомобилей «Кузов из фольги». Чем недовольны покупатели популярных автомобилей

Чем недовольны люди, которые купили популярные в России автомобили

РБК
За кого нельзя выходить замуж: советы 1930 года За кого нельзя выходить замуж: советы 1930 года

Как профессор Герлинг объяснял, какие мужчины хуже всего годятся в супруги?

Cosmopolitan
Невероятный медицинский случай: в головном мозге мужчины обнаружили «островок» плесени. Пациент при этом выжил Невероятный медицинский случай: в головном мозге мужчины обнаружили «островок» плесени. Пациент при этом выжил

«Честно говоря, я не могу поверить, что ты жив»

Популярная механика
Маленький парк в большом городе: как и почему урбанисты разбивают камерные сады Маленький парк в большом городе: как и почему урбанисты разбивают камерные сады

Разбираемся, в чем прелесть мини-парков и какие они бывают

СНОБ
Какие фильмы нужно обязательно показать ребенку в разном возрасте: киноплан идеального отца Какие фильмы нужно обязательно показать ребенку в разном возрасте: киноплан идеального отца

Идеальный план развития ребенка от 0 до 18 лет через кино и мультфильмы.

Maxim
«Неправильно выбрали инвесторов»: сооснователь Viber Игорь Магазинник о продаже Juno и «стартап-чуде» в Израиле «Неправильно выбрали инвесторов»: сооснователь Viber Игорь Магазинник о продаже Juno и «стартап-чуде» в Израиле

Главное из интервью сооснователя Viber и Juno проекту «Русские норм»

VC.RU
Что говорит характер кошек об их владельцах? Что говорит характер кошек об их владельцах?

Как на личность кошки влияет характер её владельца?

Cosmopolitan
Как изменить жизнь к лучшему: 10 книг о полезных привычках Как изменить жизнь к лучшему: 10 книг о полезных привычках

Книги, которые помогут улучшить здоровье и качество жизни

РБК
Автоподставы на дороге. 9 ситуаций, в которые легко попасть каждому Автоподставы на дороге. 9 ситуаций, в которые легко попасть каждому

«Дымящийся» автомобиль, булыжники на дороге и другие способы обмана водителей

РБК
Почему новогодние праздники — лучшее время попробовать интервальное голодание Почему новогодние праздники — лучшее время попробовать интервальное голодание

Попробуем начать новую жизнь — но без мучительных диет и подсчета калорий

Cosmopolitan
Индивидуальный проект Индивидуальный проект

Забота о чужом ребенке как основа крепкого брачного союза

СНОБ
«Как я встретила вашего папу»: слишком стерильный спин-офф культового сериала «Как я встретила вашего папу»: слишком стерильный спин-офф культового сериала

На кого рассчитан сериал «Как я встретила вашего папу»?

Forbes
Мед: польза и вред, калорийность, советы врача Мед: польза и вред, калорийность, советы врача

Действительно ли мед содержит так много витаминов и питательных элементов?

РБК
Можно ли внедрить человеку искусственные воспоминания: безумные эксперименты Можно ли внедрить человеку искусственные воспоминания: безумные эксперименты

Искусственное внедрение ложных воспоминаний — фантастика или реальность?

Популярная механика
«Путеводитель зоолога по Галактике» «Путеводитель зоолога по Галактике»

Зачем животные двигаются?

N+1
Наоми Осака, сестры Уильямс, Симона Байлз: самые высокооплачиваемые спортсменки мира Наоми Осака, сестры Уильямс, Симона Байлз: самые высокооплачиваемые спортсменки мира

Совокупный годовой доход десяти самых высокооплачиваемых спортсменок — $167 млн

Forbes
Curiosity обнаружил на Марсе углеродный след жизни. Главные новости науки сегодня Curiosity обнаружил на Марсе углеродный след жизни. Главные новости науки сегодня

Марсоход Curiosity обнаружил отложения бедные изотопом углерод-13

Популярная механика
Как скрыть свой номер в Телеграме с телефона и компьютера: пошаговые действия Как скрыть свой номер в Телеграме с телефона и компьютера: пошаговые действия

Разбираемся, как защитить свою приватность в телеграме

Playboy
Не стой у себя на пути: почему работа не должна влиять на самооценку Не стой у себя на пути: почему работа не должна влиять на самооценку

Отрывок из книги «Не стой у себя на пути» — как избавиться от ложных установок

Forbes
Притяжение кварка и антикварка ослабло в сильном магнитном поле Притяжение кварка и антикварка ослабло в сильном магнитном поле

Натяжение струны между кварком и антикварком уменьшается при магнитном поле

N+1
Пурпурноголовые малюры неожиданно для орнитологов вывели птенцов во время сухого сезона Пурпурноголовые малюры неожиданно для орнитологов вывели птенцов во время сухого сезона

Ранее считалось, что малюры размножаются почти исключительно в период дождей

N+1
Электронное ночное зрение: как видеть в темноте Электронное ночное зрение: как видеть в темноте

Как электронно-оптические преобразователи позволяют видеть в кромешной темноте

Популярная механика
Открыть в приложении