Предлагаем вам вариант еще одной новой и увлекательной игры

Популярная механикаСобытия

Игра в конфигурации: читайте о новой головоломке

Предлагаем вам вариант еще одной новой и увлекательной игры, которая подойдет как детям, так и взрослым. На первый взгляд, она представляет собой типичную головоломку с переменными начальными условиями типа кубика Рубика, судоку или пасьянса. Однако ее возможности значительно шире.

Антонио Грамши

Игра в конфигурации может использоваться как конструктор для разнообразных красивых конфигураций – аналогично игре (точнее, клеточному автомату) “Жизнь”, – а также для создания интересных математических задач.

Правила игры очень просты. На “бесконечном” листе бумаги в клетку задается произвольная начальная конфигурация из конечного числа крестиков, которую назовем затравкой. Пример затравки представлен на рис. 1.

Рисунок 1. Назовем приведенную на рисунке затравку из четырех крестиков тетрадой. Здесь и в следующих рисунках затравка выделена синим цветом.

К затравке последовательно добавляются новые крестики в соответствии со следующими двумя правилами.

  1. Каждый выставляемый крестик должен образовывать с уже выставленными хотя бы один ряд из трех рядом стоящих крестиков по вертикали, горизонтали или диагонали. Из этого правила следует, что нельзя выставлять изолированный крестик, а также выстраивать ряд, состоящий лишь из двух рядом стоящих крестиков.
  2. Запрещается ставить крестик, если он при этом образует с уже выставленными хотя бы один ряд более чем из трех рядом стоящих крестиков. Эти правила иллюстрируются на рис. 2.
Рисунок 2. В клетки 1, 2, 3 ставить крестики можно. После этого в клетку 4 крестик ставить нельзя, т.к. образуется ряд из четырех рядом стоящих по вертикали крестиков [1, 2, 3, 4] (нарушено правило 2). В клетку 5 крестик тоже ставить нельзя, т.к. при этом образуется диагональный ряд лишь из двух крестиков [1, 5] (нарушено правило 1).

Оказывается, к любой затравке можно добавить лишь конечное число новых крестиков (бесконечные затравки мы пока не затрагиваем). Попробуйте это доказать!

Конфигурации, к которым невозможно, не нарушая правил, добавить новые крестики, назовем полными. В противном случае они считаются неполными. Некоторые полные конфигурации, порожденные тетрадой, обладают изящной симметричной структурой (рис. 3 – 6).

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Открыть в приложении